Effect of Compositionally Different Substrates on Elemental Properties of Bay Bolete Mushrooms: Case Study of 34 Essential and Non-essential Elements from Six Areas Affected Differently by Industrial Pollution.
Alexandre V Andronikov, Irina E Andronikova, Ondrej Sebek, Eva Martinkova, Marketa Stepanova, Oksana Perehon
{"title":"Effect of Compositionally Different Substrates on Elemental Properties of Bay Bolete Mushrooms: Case Study of 34 Essential and Non-essential Elements from Six Areas Affected Differently by Industrial Pollution.","authors":"Alexandre V Andronikov, Irina E Andronikova, Ondrej Sebek, Eva Martinkova, Marketa Stepanova, Oksana Perehon","doi":"10.1007/s12011-024-04429-5","DOIUrl":null,"url":null,"abstract":"<p><p>We studied concentrations of 34 essential and non-essential elements in samples of edible Bay Bolete (Imleria badia) mushrooms added by samples of the growing substrate and bioavailable fraction. The samples were collected from six forested sites affected differently by industrial pollution and underlain by compositionally contrasting bedrock: granite, amphibolite, and peridotite. In all cases, mushrooms behaved as a bioconcentrating system for elements such as Ag, K, P, Rb, S, and Se (BCF > 1) being a bioexcluding system for the rest of the elements analyzed (BCF < 1). Most analyzed elements displayed moderate to high within-mushroom mobility being accumulated preferably in the apical parts of the mushroom's fruiting body (TF > 1). The highest mobility was demonstrated by Cd and Cu. Sodium was the only element with significantly low mobility (TF < 1), and it accumulated preferably in the stipe. Imleria badia seems to be sensitive to the accumulation of elements such as As, Cd, and Pb from the atmospheric deposits. Specific geochemistry of the growing substrate was reflected to different extend in the accumulation of elements such as Ag, Cu, Rb, S, Al, Ca, Fe, Ba, and Na in the mushroom's fruiting bodies.</p>","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":" ","pages":"3896-3912"},"PeriodicalIF":3.6000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12174288/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Trace Element Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12011-024-04429-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We studied concentrations of 34 essential and non-essential elements in samples of edible Bay Bolete (Imleria badia) mushrooms added by samples of the growing substrate and bioavailable fraction. The samples were collected from six forested sites affected differently by industrial pollution and underlain by compositionally contrasting bedrock: granite, amphibolite, and peridotite. In all cases, mushrooms behaved as a bioconcentrating system for elements such as Ag, K, P, Rb, S, and Se (BCF > 1) being a bioexcluding system for the rest of the elements analyzed (BCF < 1). Most analyzed elements displayed moderate to high within-mushroom mobility being accumulated preferably in the apical parts of the mushroom's fruiting body (TF > 1). The highest mobility was demonstrated by Cd and Cu. Sodium was the only element with significantly low mobility (TF < 1), and it accumulated preferably in the stipe. Imleria badia seems to be sensitive to the accumulation of elements such as As, Cd, and Pb from the atmospheric deposits. Specific geochemistry of the growing substrate was reflected to different extend in the accumulation of elements such as Ag, Cu, Rb, S, Al, Ca, Fe, Ba, and Na in the mushroom's fruiting bodies.
期刊介绍:
Biological Trace Element Research provides a much-needed central forum for the emergent, interdisciplinary field of research on the biological, environmental, and biomedical roles of trace elements. Rather than confine itself to biochemistry, the journal emphasizes the integrative aspects of trace metal research in all appropriate fields, publishing human and animal nutritional studies devoted to the fundamental chemistry and biochemistry at issue as well as to the elucidation of the relevant aspects of preventive medicine, epidemiology, clinical chemistry, agriculture, endocrinology, animal science, pharmacology, microbiology, toxicology, virology, marine biology, sensory physiology, developmental biology, and related fields.