Ziyi Song, Weining Shen, Marina Vannucci, Alexandria Baldizon, Paul M Cinciripini, Francesco Versace, Michele Guindani
{"title":"Clustering computer mouse tracking data with informed hierarchical shrinkage partition priors.","authors":"Ziyi Song, Weining Shen, Marina Vannucci, Alexandria Baldizon, Paul M Cinciripini, Francesco Versace, Michele Guindani","doi":"10.1093/biomtc/ujae124","DOIUrl":null,"url":null,"abstract":"<p><p>Mouse-tracking data, which record computer mouse trajectories while participants perform an experimental task, provide valuable insights into subjects' underlying cognitive processes. Neuroscientists are interested in clustering the subjects' responses during computer mouse-tracking tasks to reveal patterns of individual decision-making behaviors and identify population subgroups with similar neurobehavioral responses. These data can be combined with neuroimaging data to provide additional information for personalized interventions. In this article, we develop a novel hierarchical shrinkage partition (HSP) prior for clustering summary statistics derived from the trajectories of mouse-tracking data. The HSP model defines a subjects' cluster as a set of subjects that gives rise to more similar (rather than identical) nested partitions of the conditions. The proposed model can incorporate prior information about the partitioning of either subjects or conditions to facilitate clustering, and it allows for deviations of the nested partitions within each subject group. These features distinguish the HSP model from other bi-clustering methods that typically create identical nested partitions of conditions within a subject group. Furthermore, it differs from existing nested clustering methods, which define clusters based on common parameters in the sampling model and identify subject groups by different distributions. We illustrate the unique features of the HSP model on a mouse tracking dataset from a pilot study and in simulation studies. Our results show the ability and effectiveness of the proposed exploratory framework in clustering and revealing possible different behavioral patterns across subject groups.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"80 4","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523067/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae124","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mouse-tracking data, which record computer mouse trajectories while participants perform an experimental task, provide valuable insights into subjects' underlying cognitive processes. Neuroscientists are interested in clustering the subjects' responses during computer mouse-tracking tasks to reveal patterns of individual decision-making behaviors and identify population subgroups with similar neurobehavioral responses. These data can be combined with neuroimaging data to provide additional information for personalized interventions. In this article, we develop a novel hierarchical shrinkage partition (HSP) prior for clustering summary statistics derived from the trajectories of mouse-tracking data. The HSP model defines a subjects' cluster as a set of subjects that gives rise to more similar (rather than identical) nested partitions of the conditions. The proposed model can incorporate prior information about the partitioning of either subjects or conditions to facilitate clustering, and it allows for deviations of the nested partitions within each subject group. These features distinguish the HSP model from other bi-clustering methods that typically create identical nested partitions of conditions within a subject group. Furthermore, it differs from existing nested clustering methods, which define clusters based on common parameters in the sampling model and identify subject groups by different distributions. We illustrate the unique features of the HSP model on a mouse tracking dataset from a pilot study and in simulation studies. Our results show the ability and effectiveness of the proposed exploratory framework in clustering and revealing possible different behavioral patterns across subject groups.
期刊介绍:
The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.