Aaron Barron, Jetro J Tuulari, Linnea Karlsson, Hasse Karlsson, Gerard W O'Keeffe, Cathal M McCarthy
{"title":"Simulated ischaemia/reperfusion impairs trophoblast function through divergent oxidative stress- and MMP-9-dependent mechanisms.","authors":"Aaron Barron, Jetro J Tuulari, Linnea Karlsson, Hasse Karlsson, Gerard W O'Keeffe, Cathal M McCarthy","doi":"10.1042/BSR20240763","DOIUrl":null,"url":null,"abstract":"<p><p>Early-onset pre-eclampsia is believed to arise from defective placentation in the first trimester, leading to placental ischaemia/reperfusion (I/R) and oxidative stress. However, our current understanding of the effects of I/R and oxidative stress on trophoblast function is ambiguous in part due to studies exposing trophoblasts to hypoxia instead of I/R, and which report conflicting results. Here, we present a model of simulated ischaemia/reperfusion (SI/R) to recapitulate the pathophysiological events of early-onset pre-eclampsia (PE), by exposing first trimester cytotrophoblast HTR-8/SVneo cells to a simulated ischaemia buffer followed by reperfusion. We examined different ischaemia and reperfusion times and observed that 1 h ischaemia and 24 h reperfusion induced an increase in reactive oxygen species (ROS) production (P<0.0001) and oxygen consumption rate (P<0.01). SI/R-exposed trophoblast cells exhibited deficits in migration, proliferation, and invasion (P<0.01). While the deficits in migration and proliferation were rescued by antioxidants, suggesting an ROS-dependent mechanism, the loss of invasion was not affected by antioxidants, which suggests a divergent ROS-independent pathway. In line with this, we observed a decrease in MMP-9, the key regulatory enzyme necessary for trophoblast invasion (P<0.01), which was similarly unaffected by antioxidants, and pharmacological inhibition of MMP-9 replicated the phenotype of deficient invasion (P<0.01). Collectively, these data demonstrate that I/R impairs trophoblast migration and proliferation via a ROS-dependent mechanism, and invasion via an ROS-independent loss of MMP-9, disambiguating the role of oxidative stress and providing insights into the response of trophoblasts to I/R in the context of early-onset PE.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BSR20240763","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Early-onset pre-eclampsia is believed to arise from defective placentation in the first trimester, leading to placental ischaemia/reperfusion (I/R) and oxidative stress. However, our current understanding of the effects of I/R and oxidative stress on trophoblast function is ambiguous in part due to studies exposing trophoblasts to hypoxia instead of I/R, and which report conflicting results. Here, we present a model of simulated ischaemia/reperfusion (SI/R) to recapitulate the pathophysiological events of early-onset pre-eclampsia (PE), by exposing first trimester cytotrophoblast HTR-8/SVneo cells to a simulated ischaemia buffer followed by reperfusion. We examined different ischaemia and reperfusion times and observed that 1 h ischaemia and 24 h reperfusion induced an increase in reactive oxygen species (ROS) production (P<0.0001) and oxygen consumption rate (P<0.01). SI/R-exposed trophoblast cells exhibited deficits in migration, proliferation, and invasion (P<0.01). While the deficits in migration and proliferation were rescued by antioxidants, suggesting an ROS-dependent mechanism, the loss of invasion was not affected by antioxidants, which suggests a divergent ROS-independent pathway. In line with this, we observed a decrease in MMP-9, the key regulatory enzyme necessary for trophoblast invasion (P<0.01), which was similarly unaffected by antioxidants, and pharmacological inhibition of MMP-9 replicated the phenotype of deficient invasion (P<0.01). Collectively, these data demonstrate that I/R impairs trophoblast migration and proliferation via a ROS-dependent mechanism, and invasion via an ROS-independent loss of MMP-9, disambiguating the role of oxidative stress and providing insights into the response of trophoblasts to I/R in the context of early-onset PE.
期刊介绍:
Bioscience Reports provides a home for sound scientific research in all areas of cell biology and molecular life sciences.
Since 2012, Bioscience Reports has been fully Open Access and publishes all papers under the liberal CC BY licence, giving the life science community quality research to share and discuss.Content before 2012 is subscription-only, and is accessible via archive purchase.
Articles are assessed on soundness, providing a home for valid findings and data.
We welcome papers that span disciplines (e.g. chemistry, medicine), including papers describing:
-new methodologies
-tools and reagents to probe biological questions
-mechanistic details
-disease mechanisms
-metabolic processes and their regulation
-structure and function
-bioenergetics