{"title":"Exploring the importance of predicted camel NRAP exon 4 for environmental adaptation using a mouse model.","authors":"Sung-Yeon Lee, Bo-Young Lee, Byeonghwi Lim, Rasel Uzzaman, Goo Jang, Kwan-Suk Kim","doi":"10.1111/age.13490","DOIUrl":null,"url":null,"abstract":"<p><p>Camels possess exceptional adaptability, allowing them to withstand extreme temperatures in desert environments. They conserve water by reducing their metabolic rate and regulating body temperature. The heart of the camel plays a crucial role in this adaptation, with specific genes expressed in cardiac tissue that are essential for mammalian adaptation, regulating cardiac function and responding to environmental stressors. One such gene, nebulin-related-anchoring protein (NRAP), is involved in the assembly of myofibrils and the transmission of force within the heart. In our study of the NRAP gene across various livestock species, including three camel species, we identified a camel-specific exon region in the NRAP transcripts. This additional exon (exon 4) contains an open reading frame predicted in camels. To investigate its function, we generated knock-in mice expressing camel NRAP exon 4. These 'camelized mice' exhibited normal phenotypic characteristics compared with wild-type mice but showed elevated body temperatures under cold stress. Transcriptome analyses of the hearts from camelized mice under cold stress revealed differentially expressed inflammatory cytokine genes, known to influence cardiac function by modulating the contractility of cardiac muscle cells. We propose further investigations utilizing these camelized mice to explore these findings in greater depth.</p>","PeriodicalId":7905,"journal":{"name":"Animal genetics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/age.13490","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Camels possess exceptional adaptability, allowing them to withstand extreme temperatures in desert environments. They conserve water by reducing their metabolic rate and regulating body temperature. The heart of the camel plays a crucial role in this adaptation, with specific genes expressed in cardiac tissue that are essential for mammalian adaptation, regulating cardiac function and responding to environmental stressors. One such gene, nebulin-related-anchoring protein (NRAP), is involved in the assembly of myofibrils and the transmission of force within the heart. In our study of the NRAP gene across various livestock species, including three camel species, we identified a camel-specific exon region in the NRAP transcripts. This additional exon (exon 4) contains an open reading frame predicted in camels. To investigate its function, we generated knock-in mice expressing camel NRAP exon 4. These 'camelized mice' exhibited normal phenotypic characteristics compared with wild-type mice but showed elevated body temperatures under cold stress. Transcriptome analyses of the hearts from camelized mice under cold stress revealed differentially expressed inflammatory cytokine genes, known to influence cardiac function by modulating the contractility of cardiac muscle cells. We propose further investigations utilizing these camelized mice to explore these findings in greater depth.
期刊介绍:
Animal Genetics reports frontline research on immunogenetics, molecular genetics and functional genomics of economically important and domesticated animals. Publications include the study of variability at gene and protein levels, mapping of genes, traits and QTLs, associations between genes and traits, genetic diversity, and characterization of gene or protein expression and control related to phenotypic or genetic variation.
The journal publishes full-length articles, short communications and brief notes, as well as commissioned and submitted mini-reviews on issues of interest to Animal Genetics readers.