Synthetic-bioinformatic natural product-inspired peptides.

IF 10.2 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Samantha Nelson, Elizabeth I Parkinson
{"title":"Synthetic-bioinformatic natural product-inspired peptides.","authors":"Samantha Nelson, Elizabeth I Parkinson","doi":"10.1039/d4np00043a","DOIUrl":null,"url":null,"abstract":"<p><p>Covering: 2016 to 2024Natural products, particularly cyclic peptides, are a promising source of bioactive compounds. Nonribosomal peptide synthetases (NRPSs) play a key role in biosynthesizing these compounds, which include antibiotic and anticancer agents, immunosuppressants, and others. Traditional methods of discovering natural products have limitations including cryptic biosynthetic gene clusters (BGCs), low titers, and currently unculturable organisms. This has prompted the exploration of alternative approaches. Synthetic-bioinformatic natural products (<i>syn</i>-BNPs) are one such alternative that utilizes bioinformatics techniques to predict nonribosomal peptides (NRPs) followed by chemical synthesis of the predicted peptides. This approach has shown promise, resulting in the discovery of a variety of bioactive compounds including peptides with antibacterial, antifungal, anticancer, and proteasome-stimulating activities. Despite the success of this approach, challenges remain especially in the accurate prediction of fatty acid incorporation, tailoring enzyme modifications, and peptide release mechanisms. Further work in these areas will enable the discovery of many bioactive peptides that are currently inaccessible.</p>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":" ","pages":""},"PeriodicalIF":10.2000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11525955/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Product Reports","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4np00043a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Covering: 2016 to 2024Natural products, particularly cyclic peptides, are a promising source of bioactive compounds. Nonribosomal peptide synthetases (NRPSs) play a key role in biosynthesizing these compounds, which include antibiotic and anticancer agents, immunosuppressants, and others. Traditional methods of discovering natural products have limitations including cryptic biosynthetic gene clusters (BGCs), low titers, and currently unculturable organisms. This has prompted the exploration of alternative approaches. Synthetic-bioinformatic natural products (syn-BNPs) are one such alternative that utilizes bioinformatics techniques to predict nonribosomal peptides (NRPs) followed by chemical synthesis of the predicted peptides. This approach has shown promise, resulting in the discovery of a variety of bioactive compounds including peptides with antibacterial, antifungal, anticancer, and proteasome-stimulating activities. Despite the success of this approach, challenges remain especially in the accurate prediction of fatty acid incorporation, tailoring enzyme modifications, and peptide release mechanisms. Further work in these areas will enable the discovery of many bioactive peptides that are currently inaccessible.

合成生物信息学天然产品启发肽。
覆盖时间:2016 年至 2024 年天然产品,尤其是环肽,是一种前景广阔的生物活性化合物来源。非核糖体肽合成酶(NRPS)在这些化合物的生物合成中发挥着关键作用,其中包括抗生素和抗癌剂、免疫抑制剂等。发现天然产物的传统方法有其局限性,包括隐性生物合成基因簇(BGC)、低滴度和目前无法培养的生物。这促使人们探索其他方法。合成生物信息学天然产物(syn-BNPs)就是这样一种替代方法,它利用生物信息学技术预测非核糖体肽(NRPs),然后对预测的肽进行化学合成。这种方法前景广阔,发现了多种生物活性化合物,包括具有抗菌、抗真菌、抗癌和刺激蛋白酶体活性的多肽。尽管这种方法取得了成功,但挑战依然存在,特别是在准确预测脂肪酸结合、定制酶修饰和肽释放机制方面。在这些领域的进一步研究将有助于发现许多目前还无法获得的生物活性肽。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Natural Product Reports
Natural Product Reports 化学-生化与分子生物学
CiteScore
21.20
自引率
3.40%
发文量
127
审稿时长
1.7 months
期刊介绍: Natural Product Reports (NPR) serves as a pivotal critical review journal propelling advancements in all facets of natural products research, encompassing isolation, structural and stereochemical determination, biosynthesis, biological activity, and synthesis. With a broad scope, NPR extends its influence into the wider bioinorganic, bioorganic, and chemical biology communities. Covering areas such as enzymology, nucleic acids, genetics, chemical ecology, carbohydrates, primary and secondary metabolism, and analytical techniques, the journal provides insightful articles focusing on key developments shaping the field, rather than offering exhaustive overviews of all results. NPR encourages authors to infuse their perspectives on developments, trends, and future directions, fostering a dynamic exchange of ideas within the natural products research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信