Heavy-Metal Ions Control on PFAS Adsorption on Goethite in Aquatic Systems.

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
环境科学与技术 Pub Date : 2024-11-12 Epub Date: 2024-10-31 DOI:10.1021/acs.est.4c10068
Aaifa Chaudhary, Muhammad Usman, Wei Cheng, Stefan Haderlein, Jean-François Boily, Khalil Hanna
{"title":"Heavy-Metal Ions Control on PFAS Adsorption on Goethite in Aquatic Systems.","authors":"Aaifa Chaudhary, Muhammad Usman, Wei Cheng, Stefan Haderlein, Jean-François Boily, Khalil Hanna","doi":"10.1021/acs.est.4c10068","DOIUrl":null,"url":null,"abstract":"<p><p>Per- and polyfluoroalkyl substances (PFAS) are ubiquitous environmental contaminants that often co-occur with heavy metals. Despite their prevalence, the mobility of PFAS in complex, multicomponent systems, particularly at the molecular scale, remains poorly understood. The vast diversity of PFAS and their low concentrations alongside anthropogenic and natural substances underscore the need for integrating mechanistic insights into the sorption models. This study explores the influence of metal cations (Cu(II), Cd(II), and Fe(II)) on the adsorption of four common PFAS (PFOA, PFOS, PFDA, and GenX) onto goethite (α-FeOOH), a common iron (oxyhydr)oxide in both aquatic and terrestrial environments. PFAS adsorption was highly dependent on the PFAS type, pH, and metal ion concentration, with a surface complexation model effectively predicting these interactions. Cu(II) and Cd(II) enhanced PFOS and PFDA adsorption via ternary complexation while slightly reducing PFOA and GenX adsorption. Under anoxic conditions, Fe(II) significantly increased the adsorption of all PFAS, showing reactivity greater than those of Cu(II) and Cd(II). Additionally, natural organic matter increased PFAS mobility, although metal cations in groundwater may counteract this by enhancing PFAS retention. These findings highlight the key role of metal cations in PFAS transport and offer critical insights for predicting PFAS behavior at oxic-anoxic environmental interfaces.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":" ","pages":"20235-20244"},"PeriodicalIF":10.8000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c10068","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Per- and polyfluoroalkyl substances (PFAS) are ubiquitous environmental contaminants that often co-occur with heavy metals. Despite their prevalence, the mobility of PFAS in complex, multicomponent systems, particularly at the molecular scale, remains poorly understood. The vast diversity of PFAS and their low concentrations alongside anthropogenic and natural substances underscore the need for integrating mechanistic insights into the sorption models. This study explores the influence of metal cations (Cu(II), Cd(II), and Fe(II)) on the adsorption of four common PFAS (PFOA, PFOS, PFDA, and GenX) onto goethite (α-FeOOH), a common iron (oxyhydr)oxide in both aquatic and terrestrial environments. PFAS adsorption was highly dependent on the PFAS type, pH, and metal ion concentration, with a surface complexation model effectively predicting these interactions. Cu(II) and Cd(II) enhanced PFOS and PFDA adsorption via ternary complexation while slightly reducing PFOA and GenX adsorption. Under anoxic conditions, Fe(II) significantly increased the adsorption of all PFAS, showing reactivity greater than those of Cu(II) and Cd(II). Additionally, natural organic matter increased PFAS mobility, although metal cations in groundwater may counteract this by enhancing PFAS retention. These findings highlight the key role of metal cations in PFAS transport and offer critical insights for predicting PFAS behavior at oxic-anoxic environmental interfaces.

Abstract Image

重金属离子对水生系统中鹅卵石吸附全氟辛烷磺酸的控制。
全氟和多氟烷基物质(PFAS)是无处不在的环境污染物,经常与重金属共存。尽管 PFAS 非常普遍,但人们对其在复杂、多组分系统中的流动性,尤其是分子尺度的流动性,仍然知之甚少。全氟辛烷磺酸种类繁多,而且与人为物质和天然物质一起存在的浓度很低,这突出表明有必要将机理观点纳入吸附模型。本研究探讨了金属阳离子(Cu(II)、Cd(II) 和 Fe(II))对四种常见全氟辛烷磺酸(PFOA、PFOS、PFDA 和 GenX)在水生和陆生环境中常见的氧化铁(α-FeOOH)上的吸附作用的影响。PFAS 吸附与 PFAS 类型、pH 值和金属离子浓度高度相关,表面络合模型可有效预测这些相互作用。铜(II)和镉(II)通过三元络合增强了对全氟辛烷磺酸和全氟辛烷磺酸的吸附,同时略微降低了对全氟辛酸和玄武岩酸的吸附。在缺氧条件下,Fe(II) 显著增加了对所有 PFAS 的吸附,其反应活性高于 Cu(II) 和 Cd(II)。此外,天然有机物增加了全氟辛烷磺酸的流动性,但地下水中的金属阳离子可能会通过增强全氟辛烷磺酸的滞留来抵消这一作用。这些发现强调了金属阳离子在全氟辛烷磺酸迁移中的关键作用,并为预测全氟辛烷磺酸在缺氧-缺氧环境界面的行为提供了重要见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信