Sen Meng, Cheng Yao, Gang Liu, Huaifei Chen, Taishan Hu, Zhicheng Zhang, Jie Yang, Wei Yang
{"title":"A 3D-Printed Bionic Membrane with Autonomously Passive Unidirectional Liquid Transfer Capability for Water Condensation, Collection, and Purification.","authors":"Sen Meng, Cheng Yao, Gang Liu, Huaifei Chen, Taishan Hu, Zhicheng Zhang, Jie Yang, Wei Yang","doi":"10.1021/acsami.4c11869","DOIUrl":null,"url":null,"abstract":"<p><p>Interfacial solar vapor generation is a promising technology for alleviating the current global water crisis, and the evaporation rate and efficiency have approached the theoretical limit. In a practical interfacial evaporation water purification system, the collection rate of purified water is typically lower than the evaporation rate. Passive collection devices based on gravity are susceptible to environmental influences and exhibit low collection efficiency, while active collection devices consuming external energy suffer from complex device systems and extra energy consumption. Given that both collection devices are nonselective and unable to distinguish contaminants mixed in the vapor, bionic membranes with autonomously passive and unidirectional water transfer capacity are developed through 3D printing for efficient water collection. More importantly, the bionic membranes are capable of high-speed water transportation without the need for external energy or gravity drive and liquid-selective transportation for separating oily pollutants from the collected products. The directional transport property facilitates the modular assembly of the bionic membrane, extending its application to practical large-scale solar-driven seawater desalination systems.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c11869","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Interfacial solar vapor generation is a promising technology for alleviating the current global water crisis, and the evaporation rate and efficiency have approached the theoretical limit. In a practical interfacial evaporation water purification system, the collection rate of purified water is typically lower than the evaporation rate. Passive collection devices based on gravity are susceptible to environmental influences and exhibit low collection efficiency, while active collection devices consuming external energy suffer from complex device systems and extra energy consumption. Given that both collection devices are nonselective and unable to distinguish contaminants mixed in the vapor, bionic membranes with autonomously passive and unidirectional water transfer capacity are developed through 3D printing for efficient water collection. More importantly, the bionic membranes are capable of high-speed water transportation without the need for external energy or gravity drive and liquid-selective transportation for separating oily pollutants from the collected products. The directional transport property facilitates the modular assembly of the bionic membrane, extending its application to practical large-scale solar-driven seawater desalination systems.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture