J Jacko, M Morvová, N Tóth Hervay, D Eliaš, Y Gbelská, I Waczulíková, D Gášková, M Balážová, L Šikurová
{"title":"Impact of ERG6 Gene Deletion on Membrane Composition and Properties in the Pathogenic Yeast Candida glabrata.","authors":"J Jacko, M Morvová, N Tóth Hervay, D Eliaš, Y Gbelská, I Waczulíková, D Gášková, M Balážová, L Šikurová","doi":"10.1007/s12013-024-01599-w","DOIUrl":null,"url":null,"abstract":"<p><p>The ERG6 gene is crucial for the biosynthesis of ergosterol, a key component of yeast cell membranes. Our study examines the impact of ERG6 gene deletion on the membrane composition and physicochemical properties of the pathogenic yeast Candida glabrata. Specifically, we investigated changes in selected sterol content, phospholipid composition, transmembrane potential, and PDR16 gene activity. Sterol levels were measured using high-performance liquid chromatography, the phospholipid profile was analysed via thin-layer chromatography, transmembrane potential was assessed with fluorescence spectroscopy, and gene expression levels were determined by quantitative PCR. Our findings revealed a depletion of ergosterol, increased zymosterol and eburicol content, an increased phosphatidylcholine and a reduced phosphatidylethanolamine content in the Δerg6 strain compared to the wt. Additionally, the Δerg6 strain exhibited membrane hyperpolarization without changes in PDR16 expression. Furthermore, the Δerg6 strain showed increased sensitivity to the antifungals myriocin and aureobasidine A. These results suggest that ERG6 gene deletion leads to significant alterations in membrane composition and may activates an alternative ergosterol synthesis pathway in the C. glabrata Δerg6 deletion mutant.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-024-01599-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The ERG6 gene is crucial for the biosynthesis of ergosterol, a key component of yeast cell membranes. Our study examines the impact of ERG6 gene deletion on the membrane composition and physicochemical properties of the pathogenic yeast Candida glabrata. Specifically, we investigated changes in selected sterol content, phospholipid composition, transmembrane potential, and PDR16 gene activity. Sterol levels were measured using high-performance liquid chromatography, the phospholipid profile was analysed via thin-layer chromatography, transmembrane potential was assessed with fluorescence spectroscopy, and gene expression levels were determined by quantitative PCR. Our findings revealed a depletion of ergosterol, increased zymosterol and eburicol content, an increased phosphatidylcholine and a reduced phosphatidylethanolamine content in the Δerg6 strain compared to the wt. Additionally, the Δerg6 strain exhibited membrane hyperpolarization without changes in PDR16 expression. Furthermore, the Δerg6 strain showed increased sensitivity to the antifungals myriocin and aureobasidine A. These results suggest that ERG6 gene deletion leads to significant alterations in membrane composition and may activates an alternative ergosterol synthesis pathway in the C. glabrata Δerg6 deletion mutant.
期刊介绍:
Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems
The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized.
Examples of subject areas that CBB publishes are:
· biochemical and biophysical aspects of cell structure and function;
· interactions of cells and their molecular/macromolecular constituents;
· innovative developments in genetic and biomolecular engineering;
· computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies;
· photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design
For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.