Cui-Hong Hao, Chen Pang, Li-Na Yang, Feng Xiong, Sha Li
{"title":"Myosin-binding protein 13 mediates primary seed dormancy via abscisic acid biosynthesis and signaling in Arabidopsis.","authors":"Cui-Hong Hao, Chen Pang, Li-Na Yang, Feng Xiong, Sha Li","doi":"10.1111/tpj.17112","DOIUrl":null,"url":null,"abstract":"<p><p>Dormancy is an essential characteristic that enables seeds to survive in unfavorable conditions while germinating when conditions are favorable. Myosin-binding proteins (MyoBs) assist in the movement of organelles along actin microfilaments by attaching to both organelles and myosins. In contrast to studies on yeast and metazoans, research on plant MyoBs is still in its early stages and primarily focuses on tip-growing cells. In this study, we found that Arabidopsis MyoB13 is highly expressed in dry mature seeds. The myob13 mutant, created using CRISPR/Cas9, exhibits a preharvest sprouting phenotype, which can be mitigated by after-ripening treatment, indicating that MyoB13 plays a positive role in primary seed dormancy. Furthermore, we show that MyoB13 negatively regulates ABA biosynthesis and signaling pathways. Notably, the expression of MyoB13 orthologs from maize and soybean can completely restore the phenotype of the Arabidopsis myob13 mutant, suggesting that the function of MyoB13 in ABA-induced seed dormancy is evolutionarily conserved. Therefore, the functional characterization of MyoB13 offers an additional genetic resource to help prevent vivipary in crop species.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/tpj.17112","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Dormancy is an essential characteristic that enables seeds to survive in unfavorable conditions while germinating when conditions are favorable. Myosin-binding proteins (MyoBs) assist in the movement of organelles along actin microfilaments by attaching to both organelles and myosins. In contrast to studies on yeast and metazoans, research on plant MyoBs is still in its early stages and primarily focuses on tip-growing cells. In this study, we found that Arabidopsis MyoB13 is highly expressed in dry mature seeds. The myob13 mutant, created using CRISPR/Cas9, exhibits a preharvest sprouting phenotype, which can be mitigated by after-ripening treatment, indicating that MyoB13 plays a positive role in primary seed dormancy. Furthermore, we show that MyoB13 negatively regulates ABA biosynthesis and signaling pathways. Notably, the expression of MyoB13 orthologs from maize and soybean can completely restore the phenotype of the Arabidopsis myob13 mutant, suggesting that the function of MyoB13 in ABA-induced seed dormancy is evolutionarily conserved. Therefore, the functional characterization of MyoB13 offers an additional genetic resource to help prevent vivipary in crop species.
期刊介绍:
Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community.
Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.