Photodual-Responsive Anthracene-Based 2D Covalent Organic Framework for Optoelectronic Synaptic Devices.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Lei Zhao, Yang Gao, Xin Fu, Yu Chen, Bin Zhang, Fuzhen Xuan
{"title":"Photodual-Responsive Anthracene-Based 2D Covalent Organic Framework for Optoelectronic Synaptic Devices.","authors":"Lei Zhao, Yang Gao, Xin Fu, Yu Chen, Bin Zhang, Fuzhen Xuan","doi":"10.1002/smtd.202401341","DOIUrl":null,"url":null,"abstract":"<p><p>To facilitate the development of efficient neuromorphic perception and computation, it is crucial to explore optoelectronic synaptic devices that integrate perceptual and computational capabilities. Various materials such as oxide semiconductors, conjugated organic polymers, transition metal sulfides, perovskite materials, and metal nanoparticles, along with their composites, are utilized in constructing these devices. However, optoelectronic synaptic devices based on 2D covalent organic frameworks (COFs) is rarely reported. In this study, an anthracene-based 2D COF (COF-DaTp) film is prepared using a room-temperature interface-confined strategy and utilized it as the active layer in an optoelectronic synaptic device with an Al/COF-DaTp/ITO configuration. The device demonstrated dual optoelectronic modulation, exhibiting significant optoelectronic resistive switching in response to light pulses, achieving 32 photoconductive states. Moreover, it exhibited history-dependent memristive behavior in voltage scans and electrical pulses, with a comparable diversity of 32 conductive states. The photodual-responsive properties of the COF-DaTp-based synaptic device enable it to simultaneously perform optical sensing and basic image denoising and recognition tasks, significantly enhancing recognition accuracy and reducing the number of training epochs compared to datasets without noise mitigation. This work opens the door for the application of 2D COF-based optoelectronic synaptic devices in visual computational processing.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401341"},"PeriodicalIF":10.7000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401341","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To facilitate the development of efficient neuromorphic perception and computation, it is crucial to explore optoelectronic synaptic devices that integrate perceptual and computational capabilities. Various materials such as oxide semiconductors, conjugated organic polymers, transition metal sulfides, perovskite materials, and metal nanoparticles, along with their composites, are utilized in constructing these devices. However, optoelectronic synaptic devices based on 2D covalent organic frameworks (COFs) is rarely reported. In this study, an anthracene-based 2D COF (COF-DaTp) film is prepared using a room-temperature interface-confined strategy and utilized it as the active layer in an optoelectronic synaptic device with an Al/COF-DaTp/ITO configuration. The device demonstrated dual optoelectronic modulation, exhibiting significant optoelectronic resistive switching in response to light pulses, achieving 32 photoconductive states. Moreover, it exhibited history-dependent memristive behavior in voltage scans and electrical pulses, with a comparable diversity of 32 conductive states. The photodual-responsive properties of the COF-DaTp-based synaptic device enable it to simultaneously perform optical sensing and basic image denoising and recognition tasks, significantly enhancing recognition accuracy and reducing the number of training epochs compared to datasets without noise mitigation. This work opens the door for the application of 2D COF-based optoelectronic synaptic devices in visual computational processing.

用于光电突触设备的光电互响应蒽基二维共价有机框架。
为了促进高效神经形态感知和计算的发展,探索整合感知和计算能力的光电突触设备至关重要。氧化物半导体、共轭有机聚合物、过渡金属硫化物、过氧化物材料和金属纳米颗粒等各种材料及其复合材料被用于构建这些设备。然而,基于二维共价有机框架(COFs)的光电突触器件却鲜有报道。本研究采用室温界面约束策略制备了蒽基二维 COF(COF-DaTp)薄膜,并将其用作铝/COF-DaTp/ITO 配置的光电突触器件的活性层。该器件实现了双光电调制,在响应光脉冲时表现出显著的光电阻性开关,实现了 32 种光电导状态。此外,它还在电压扫描和电脉冲中表现出与历史相关的忆阻行为,具有类似的 32 种导电状态。基于 COF-DaTp 的突触器件的光电响应特性使其能够同时执行光学传感和基本图像去噪与识别任务,与没有噪声缓解的数据集相比,显著提高了识别准确率并减少了训练历时。这项工作为基于二维 COF 的光电突触器件在视觉计算处理中的应用打开了大门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信