Temperature-Dependent Kinetics of Plasma-Based CO2 Conversion: Interplay of Electron-Driven and Thermal-Driven Chemistry.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2024-10-31 DOI:10.1002/cssc.202401526
Aswath Mohanan, Ramses Snoeckx, Min Suk Cha
{"title":"Temperature-Dependent Kinetics of Plasma-Based CO<sub>2</sub> Conversion: Interplay of Electron-Driven and Thermal-Driven Chemistry.","authors":"Aswath Mohanan, Ramses Snoeckx, Min Suk Cha","doi":"10.1002/cssc.202401526","DOIUrl":null,"url":null,"abstract":"<p><p>The transformation of CO<sub>2</sub> into chemical building blocks for various industries is considered a key technology in a net-zero energy future. To realize this, plasma discharges are one of the most promising approaches thanks to their electron-driven reactions and high operational flexibility. Most studies focused on room-temperature and vibrationally-excited discharges, however, lately, the importance of thermal reactions is considered. Therefore, we developed a temperature-dependent plasma-chemical reaction mechanism to investigate the temperature dependence of plasma-based CO<sub>2</sub> conversion. Here, we present the various effects of thermally-driven reactions on the CO<sub>2</sub> conversion as a function of the gas temperature and specific energy input. Our analysis pinpointed the key reactions controlling the plasma-based CO<sub>2</sub> conversion, shifting from an electron-driven to a thermal-driven regime. Additionally, we used the mechanism to verify the theoretical upper boundary of the process' energy efficiency, and discussed how our findings could lead to the further development and optimization of plasma discharges for efficient CO<sub>2</sub> conversion in the future.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202401526"},"PeriodicalIF":7.5000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202401526","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The transformation of CO2 into chemical building blocks for various industries is considered a key technology in a net-zero energy future. To realize this, plasma discharges are one of the most promising approaches thanks to their electron-driven reactions and high operational flexibility. Most studies focused on room-temperature and vibrationally-excited discharges, however, lately, the importance of thermal reactions is considered. Therefore, we developed a temperature-dependent plasma-chemical reaction mechanism to investigate the temperature dependence of plasma-based CO2 conversion. Here, we present the various effects of thermally-driven reactions on the CO2 conversion as a function of the gas temperature and specific energy input. Our analysis pinpointed the key reactions controlling the plasma-based CO2 conversion, shifting from an electron-driven to a thermal-driven regime. Additionally, we used the mechanism to verify the theoretical upper boundary of the process' energy efficiency, and discussed how our findings could lead to the further development and optimization of plasma discharges for efficient CO2 conversion in the future.

等离子体转化二氧化碳的温度动力学:电子驱动化学与热力驱动化学的相互作用。
将二氧化碳转化为各行各业所需的化学成分被认为是未来实现净零能耗的关键技术。要实现这一目标,等离子体放电因其电子驱动反应和高度的操作灵活性而成为最有前途的方法之一。大多数研究都集中在室温放电和振动激励放电上,但最近,人们开始考虑热反应的重要性。因此,我们开发了一种温度依赖性等离子体化学反应机制,以研究基于等离子体的二氧化碳转化的温度依赖性。在此,我们介绍了热驱动反应对二氧化碳转化率的各种影响,这些影响是气体温度和比能量输入的函数。我们的分析精确定位了控制等离子体二氧化碳转化的关键反应,并将其从电子驱动机制转变为热驱动机制。此外,我们还利用该机制验证了该过程能效的理论上限,并讨论了我们的发现如何在未来进一步开发和优化等离子体放电以实现二氧化碳的高效转化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信