{"title":"Near-Infrared Light-Driven CO2 Reduction on Cup-Stacked Carbon Nanotubes","authors":"Suchan Song, Cuncun Xin, Wei Liu, Wenzhe Shang, Tianna Liu, Wentao Peng, Jungang Hou, Yantao Shi","doi":"10.1002/anie.202415173","DOIUrl":null,"url":null,"abstract":"Carbon nanotubes feature one-dimensional nature of collective excitations, wherein strong confinement of surface plasmons severely hinders the liberation of hot electrons (HEs), posing grand challenges for their utilization in photochemistry. In this study, we prototypically achieved directed HEs flow and extraction in hybrid plasmonic CNN based on cup-stacked carbon nanotubes (CSCNTs), taking advantage of their privileged edge-plane sites. The localized pz electronic states and accessible intersubband plasmon excitations in the near-infrared (NIR) regime stands in striking contrast to the conventional concentric carbon nanotubes, as evidenced by combined photo-induced force microscopy (PiFM) and transient photocurrent response. The hybrid comprising intimately integrated CSCNTs-C3N4 effectively sustains interfacial electronic states and underlies the energy extraction out of plasmonic components. The CNN demonstrates almost near-unity NIR light-driven CO2 reduction to CO with a rate of 1.35 µmol g–1 h–1. This work sheds light on the exploitation of metal-free carbon-based plasmonic nanostructures for photocatalytic applications.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202415173","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon nanotubes feature one-dimensional nature of collective excitations, wherein strong confinement of surface plasmons severely hinders the liberation of hot electrons (HEs), posing grand challenges for their utilization in photochemistry. In this study, we prototypically achieved directed HEs flow and extraction in hybrid plasmonic CNN based on cup-stacked carbon nanotubes (CSCNTs), taking advantage of their privileged edge-plane sites. The localized pz electronic states and accessible intersubband plasmon excitations in the near-infrared (NIR) regime stands in striking contrast to the conventional concentric carbon nanotubes, as evidenced by combined photo-induced force microscopy (PiFM) and transient photocurrent response. The hybrid comprising intimately integrated CSCNTs-C3N4 effectively sustains interfacial electronic states and underlies the energy extraction out of plasmonic components. The CNN demonstrates almost near-unity NIR light-driven CO2 reduction to CO with a rate of 1.35 µmol g–1 h–1. This work sheds light on the exploitation of metal-free carbon-based plasmonic nanostructures for photocatalytic applications.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.