{"title":"Selective Hydrolysis of Heterooligosaccharides by Poly(acrylate) Gel Catalysts","authors":"Susanne Striegler","doi":"10.1021/acscatal.4c04697","DOIUrl":null,"url":null,"abstract":"Natural glycoside hydrolases are distinguished by their ability to hydrolyze glycosidic bonds with high efficiency and selectivity. This feature is achieved through specific interactions in the active site during catalytic turnover and is not just facilitated by two catalytically active amino acids. Intrigued by these features, a biomimetic α-galactosidase mimic was developed using an empirical catalyst design. Starting with a library of 704 gels of which 250 have a unique composition synthesized from TEGDMA cross-linker and 7 selected monomers, 238 monomodal gels are evaluated for their ability to hydrolyze the 1→6 α-glycosidic bond in the disaccharide melibiose. Among those, 13 polyacrylate gels with the potential for high catalytic activity are identified using spectrophotometric screening assays based on Schiff bases formed with toluidine. The best-performing polyacrylate (gel A) was found to have a 1500-fold higher proficiency to hydrolyze the 1→6 α-glycosidic bond in melibiose over the 1→2 α-glycosidic bond in sucrose, translating to selective hydrolysis of the glycosidic linkages in the trisaccharide raffinose. The matrix of gel A is composed of 25 mol % TEGDMA cross-linker and equimolar amounts of cyclohexyl, butyl, and benzyl acrylate accounting for CH-π and hydrophobic interaction in the surrounding of a hydrolytic binuclear Cu(II) complex. The combined observations underline a paramount influence of matrix-stabilizing effects on the transition state of the hydrolysis of glycosidic bonds and may pave the way for the rapid development of catalysts transforming biomass.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.4c04697","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Natural glycoside hydrolases are distinguished by their ability to hydrolyze glycosidic bonds with high efficiency and selectivity. This feature is achieved through specific interactions in the active site during catalytic turnover and is not just facilitated by two catalytically active amino acids. Intrigued by these features, a biomimetic α-galactosidase mimic was developed using an empirical catalyst design. Starting with a library of 704 gels of which 250 have a unique composition synthesized from TEGDMA cross-linker and 7 selected monomers, 238 monomodal gels are evaluated for their ability to hydrolyze the 1→6 α-glycosidic bond in the disaccharide melibiose. Among those, 13 polyacrylate gels with the potential for high catalytic activity are identified using spectrophotometric screening assays based on Schiff bases formed with toluidine. The best-performing polyacrylate (gel A) was found to have a 1500-fold higher proficiency to hydrolyze the 1→6 α-glycosidic bond in melibiose over the 1→2 α-glycosidic bond in sucrose, translating to selective hydrolysis of the glycosidic linkages in the trisaccharide raffinose. The matrix of gel A is composed of 25 mol % TEGDMA cross-linker and equimolar amounts of cyclohexyl, butyl, and benzyl acrylate accounting for CH-π and hydrophobic interaction in the surrounding of a hydrolytic binuclear Cu(II) complex. The combined observations underline a paramount influence of matrix-stabilizing effects on the transition state of the hydrolysis of glycosidic bonds and may pave the way for the rapid development of catalysts transforming biomass.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.