Lu Bai, Zhenwei Jiang, Liang Fan, Xianjing Zhou, Jianquan Xu, Junjun Tan, Feng Wei, Shuji Ye, Xinping Wang
{"title":"Mechanism of Density Evolution of Polystyrene Adsorbed Layers on the Substrate","authors":"Lu Bai, Zhenwei Jiang, Liang Fan, Xianjing Zhou, Jianquan Xu, Junjun Tan, Feng Wei, Shuji Ye, Xinping Wang","doi":"10.1021/acsmacrolett.4c00470","DOIUrl":null,"url":null,"abstract":"The density evolution of polystyrene (PS) adsorbed layers on phenyl-modified SiO<sub>2</sub>-Si substrates was investigated. The thickness and density of flattened layer on substrates with above 75% phenyl content increased over annealing time and could approach 4.7 nm and 1.37 g/cm<sup>3</sup> at equilibrium, respectively, which were much higher than those on SiO<sub>2</sub>-Si. The annealing time for flattened chains to reach equilibrium increased with an increasing phenyl content on the substrate. The interface sensitive sum frequency generation vibrational spectroscopy (SFG) technique revealed that both the amount and the strength of the interfacial π–π interaction between the phenyl groups of substrates and in PS chains increased with annealing time. This resulted in more stretched chains perpendicularly, leading to a denser and thicker adsorbed layer with a closest-packing structure, driven by favorable enthalpy processes. Our work provides important insight into the densification mechanism of adsorbed flattened layers.","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Macro Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsmacrolett.4c00470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The density evolution of polystyrene (PS) adsorbed layers on phenyl-modified SiO2-Si substrates was investigated. The thickness and density of flattened layer on substrates with above 75% phenyl content increased over annealing time and could approach 4.7 nm and 1.37 g/cm3 at equilibrium, respectively, which were much higher than those on SiO2-Si. The annealing time for flattened chains to reach equilibrium increased with an increasing phenyl content on the substrate. The interface sensitive sum frequency generation vibrational spectroscopy (SFG) technique revealed that both the amount and the strength of the interfacial π–π interaction between the phenyl groups of substrates and in PS chains increased with annealing time. This resulted in more stretched chains perpendicularly, leading to a denser and thicker adsorbed layer with a closest-packing structure, driven by favorable enthalpy processes. Our work provides important insight into the densification mechanism of adsorbed flattened layers.
期刊介绍:
ACS Macro Letters publishes research in all areas of contemporary soft matter science in which macromolecules play a key role, including nanotechnology, self-assembly, supramolecular chemistry, biomaterials, energy generation and storage, and renewable/sustainable materials. Submissions to ACS Macro Letters should justify clearly the rapid disclosure of the key elements of the study. The scope of the journal includes high-impact research of broad interest in all areas of polymer science and engineering, including cross-disciplinary research that interfaces with polymer science.
With the launch of ACS Macro Letters, all Communications that were formerly published in Macromolecules and Biomacromolecules will be published as Letters in ACS Macro Letters.