High-performance composite solid-state electrolyte combining NASICON-type Li1.5Al0.5Ti1.5(PO4)3 with ionic liquid and polymeric binders

IF 5.5 3区 材料科学 Q1 ELECTROCHEMISTRY
Hugo Salazar , Bruna F. Gonçalves , Ainara Valverde , Renato Gonçalves , Carlos M. Costa , Leide P. Cavalcanti , José M. Porro , Viktor Petrenko , Senentxu Lanceros-Mendez , Qi Zhang
{"title":"High-performance composite solid-state electrolyte combining NASICON-type Li1.5Al0.5Ti1.5(PO4)3 with ionic liquid and polymeric binders","authors":"Hugo Salazar ,&nbsp;Bruna F. Gonçalves ,&nbsp;Ainara Valverde ,&nbsp;Renato Gonçalves ,&nbsp;Carlos M. Costa ,&nbsp;Leide P. Cavalcanti ,&nbsp;José M. Porro ,&nbsp;Viktor Petrenko ,&nbsp;Senentxu Lanceros-Mendez ,&nbsp;Qi Zhang","doi":"10.1016/j.electacta.2024.145299","DOIUrl":null,"url":null,"abstract":"<div><div>The use of composite solid-state electrolytes (CSEs) in Li-ion batteries presents a promising future for a new generation of solid-state battery technology. These composites address current limitations like poor room temperature ionic conductivity, low mechanical strength, and unstable interfaces. In this study, a NASICON-type Li<sub>1.5</sub>Al<sub>0.5</sub>Ti<sub>1.5</sub>(PO<sub>4</sub>)<sub>3</sub> (LATP) ceramic was prepared using a cold sintering process (CSP), incorporating LATP, poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) (PVDF-TrFE-CFE), and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][TFSI]). This three-component CSE demonstrated reduced sintering temperature, energy, time, and operational costs compared to traditional methods. The LATP-based pellet achieved high density and a prismatic structure without impurities. The addition of a polymeric binder and an ionic liquid improved the nanostructuration, dispersion, mechanical properties, and relative density of the CSEs. Small-angle neutron scattering revealed nanostructuration changes, decreasing air pore size. Notably, room temperature ionic conductivities between 10<sup>–4</sup> – 10<sup>–3</sup> S cm<sup>-1</sup> were achieved, with a maximum conductivity of 7.02 × 10<sup>–3</sup> S cm<sup>-1</sup> and lithium-transference number of 0.35 for the sample with 99 wt.% LATP and 1 wt.% polymeric binder. Additionally, a room temperature discharge capacity of 141 mAh.g<sup>-1</sup> at C/10 rate was attained after 50 cycles, validating this three-component structure as a promising platform for high-performance CSEs in solid-state batteries.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"509 ","pages":"Article 145299"},"PeriodicalIF":5.5000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013468624015354","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

The use of composite solid-state electrolytes (CSEs) in Li-ion batteries presents a promising future for a new generation of solid-state battery technology. These composites address current limitations like poor room temperature ionic conductivity, low mechanical strength, and unstable interfaces. In this study, a NASICON-type Li1.5Al0.5Ti1.5(PO4)3 (LATP) ceramic was prepared using a cold sintering process (CSP), incorporating LATP, poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) (PVDF-TrFE-CFE), and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][TFSI]). This three-component CSE demonstrated reduced sintering temperature, energy, time, and operational costs compared to traditional methods. The LATP-based pellet achieved high density and a prismatic structure without impurities. The addition of a polymeric binder and an ionic liquid improved the nanostructuration, dispersion, mechanical properties, and relative density of the CSEs. Small-angle neutron scattering revealed nanostructuration changes, decreasing air pore size. Notably, room temperature ionic conductivities between 10–4 – 10–3 S cm-1 were achieved, with a maximum conductivity of 7.02 × 10–3 S cm-1 and lithium-transference number of 0.35 for the sample with 99 wt.% LATP and 1 wt.% polymeric binder. Additionally, a room temperature discharge capacity of 141 mAh.g-1 at C/10 rate was attained after 50 cycles, validating this three-component structure as a promising platform for high-performance CSEs in solid-state batteries.
将 NASICON 型 Li1.5Al0.5Ti1.5(PO4)3 与离子液体和聚合物粘合剂相结合的高性能复合固态电解质
在锂离子电池中使用复合固态电解质(CSE)为新一代固态电池技术带来了广阔的前景。这些复合材料可以解决目前存在的局限性,如室温离子导电性差、机械强度低和界面不稳定等。本研究采用冷烧结工艺(CSP)制备了 NASICON 型 Li1.5Al0.5Ti1.5(PO4)3 (LATP)陶瓷,将 LATP、聚偏氟乙烯-三氟乙烯-氯氟乙烯(PVDF-TrFE-CFE)和 1-乙基-3-甲基咪唑鎓双(三氟甲基磺酰基)亚胺([EMIM][TFSI])结合在一起。与传统方法相比,这种三组份 CSE 降低了烧结温度、能耗、时间和操作成本。基于 LATP 的颗粒实现了高密度和无杂质的棱柱结构。聚合物粘合剂和离子液体的加入改善了 CSE 的纳米结构、分散性、机械性能和相对密度。小角中子散射显示了纳米结构的变化,气孔尺寸减小。值得注意的是,室温离子电导率介于 10-4 - 10-3 S cm-1 之间,其中含有 99 wt.% LATP 和 1 wt.% 聚合物粘合剂的样品的最大电导率为 7.02 × 10-3 S cm-1,锂转移率为 0.35。此外,经过 50 次循环后,在 C/10 速率下的室温放电容量达到了 141 mAh.g-1,验证了这种三组份结构是固态电池中高性能 CSE 的理想平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信