Sanjit Kumar Mondal, Soon-Il An, Seung-Ki Min, Tong Jiang, Buda Su
{"title":"Enhanced soil moisture–temperature coupling could exacerbate drought under net-negative emissions","authors":"Sanjit Kumar Mondal, Soon-Il An, Seung-Ki Min, Tong Jiang, Buda Su","doi":"10.1038/s41612-024-00820-0","DOIUrl":null,"url":null,"abstract":"Our understanding of drought evolution and land-atmosphere interactions under climate mitigation scenarios remains limited. Here, we analyzed future drought under net-zero and net-negative emission scenarios using the Community Earth System Model version 2, particularly focusing on three atmospheric CO2 states: linearly increases, decreases, and a return to the initial state. Interestingly, results revealed that net-zero emissions are more effective for drought mitigation than net-negative targets. Drying trends and drought characteristics — such as the duration, frequency, intensity, and area expansion are prominently increased under net-negative emissions due to higher potential evapotranspiration (PET). This is because the soil moisture and temperature couplings are stronger over drought regions and years, especially under net-negative forcing, with notable impacts in Central Africa and South Asia. Nevertheless, both target scenarios offer regional benefits, such as weakened dryness. This suggests that mitigating CO2 alone may not be sufficient to manage future droughts, highlighting the need for advanced water management strategies.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-12"},"PeriodicalIF":8.5000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00820-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41612-024-00820-0","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Our understanding of drought evolution and land-atmosphere interactions under climate mitigation scenarios remains limited. Here, we analyzed future drought under net-zero and net-negative emission scenarios using the Community Earth System Model version 2, particularly focusing on three atmospheric CO2 states: linearly increases, decreases, and a return to the initial state. Interestingly, results revealed that net-zero emissions are more effective for drought mitigation than net-negative targets. Drying trends and drought characteristics — such as the duration, frequency, intensity, and area expansion are prominently increased under net-negative emissions due to higher potential evapotranspiration (PET). This is because the soil moisture and temperature couplings are stronger over drought regions and years, especially under net-negative forcing, with notable impacts in Central Africa and South Asia. Nevertheless, both target scenarios offer regional benefits, such as weakened dryness. This suggests that mitigating CO2 alone may not be sufficient to manage future droughts, highlighting the need for advanced water management strategies.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.