Dirac-Like Fermions Anomalous Magneto-Transport in a Spin-Polarized Oxide 2D Electron System

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yu Chen, Maria D'Antuono, Mattia Trama, Daniele Preziosi, Benoit Jouault, Frédéric Teppe, Christophe Consejo, Carmine A. Perroni, Roberta Citro, Daniela Stornaiuolo, Marco Salluzzo
{"title":"Dirac-Like Fermions Anomalous Magneto-Transport in a Spin-Polarized Oxide 2D Electron System","authors":"Yu Chen, Maria D'Antuono, Mattia Trama, Daniele Preziosi, Benoit Jouault, Frédéric Teppe, Christophe Consejo, Carmine A. Perroni, Roberta Citro, Daniela Stornaiuolo, Marco Salluzzo","doi":"10.1002/adma.202410354","DOIUrl":null,"url":null,"abstract":"In a 2D electron system (2DES) the breaking of the inversion, time-reversal and bulk crystal-field symmetries is interlaced with the effects of spin-orbit coupling (SOC) triggering exotic quantum phenomena. Here, epitaxial engineering is used to design and realize a 2DES characterized simultaneously by ferromagnetic order, large Rashba SOC and hexagonal band warping at the (111) interfaces between LaAlO<sub>3</sub>, EuTiO<sub>3</sub>, and SrTiO<sub>3</sub> insulators. The 2DES displays anomalous quantum corrections to the magneto-conductance driven by the time-reversal-symmetry breaking occurring below the magnetic transition temperature. The results are explained by the emergence of a non-trivial Berry phase and competing weak anti-localization/weak localization back-scattering of Dirac-like fermions, mimicking the phenomenology of gapped topological insulators. These findings open perspectives for the engineering of novel spin-polarized functional 2DES holding promises in spin-orbitronics and topological electronics.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202410354","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In a 2D electron system (2DES) the breaking of the inversion, time-reversal and bulk crystal-field symmetries is interlaced with the effects of spin-orbit coupling (SOC) triggering exotic quantum phenomena. Here, epitaxial engineering is used to design and realize a 2DES characterized simultaneously by ferromagnetic order, large Rashba SOC and hexagonal band warping at the (111) interfaces between LaAlO3, EuTiO3, and SrTiO3 insulators. The 2DES displays anomalous quantum corrections to the magneto-conductance driven by the time-reversal-symmetry breaking occurring below the magnetic transition temperature. The results are explained by the emergence of a non-trivial Berry phase and competing weak anti-localization/weak localization back-scattering of Dirac-like fermions, mimicking the phenomenology of gapped topological insulators. These findings open perspectives for the engineering of novel spin-polarized functional 2DES holding promises in spin-orbitronics and topological electronics.

Abstract Image

自旋极化氧化物二维电子系统中的狄拉克费米子反常磁传输
在二维电子系统(2DES)中,反转、时间反转和体晶体场对称性的打破与自旋轨道耦合(SOC)效应交织在一起,引发了奇异的量子现象。在这里,我们利用外延工程设计并实现了一种 2DES ,其特点是在 LaAlO3、EuTiO3 和 SrTiO3 绝缘体之间的 (111) 接口处同时具有铁磁秩序、大 Rashba SOC 和六边形带翘曲。在磁转变温度以下发生的时间反向对称性断裂驱动下,2DES 显示出反常的磁导量子修正。这些结果可以通过模仿间隙拓扑绝缘体的现象学而出现的非三相贝里相和类狄拉克费米子的竞争性弱反局域化/弱局域化反向散射来解释。这些发现为新型自旋极化功能 2DES 的工程设计开辟了前景,为自旋轨道电子学和拓扑电子学带来了希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信