Potential Chronological Disturbance of the D’Orbigny Angrite Inferred from Discordant 26Al Ages

Cécile Deligny, Maxime Piralla, Johan Villeneuve, Evelyn Füri and Yves Marrocchi
{"title":"Potential Chronological Disturbance of the D’Orbigny Angrite Inferred from Discordant 26Al Ages","authors":"Cécile Deligny, Maxime Piralla, Johan Villeneuve, Evelyn Füri and Yves Marrocchi","doi":"10.3847/2041-8213/ad8654","DOIUrl":null,"url":null,"abstract":"Angrites originate from the early-formed differentiated angrite parent body. The pristine volcanic angrite D’Orbigny is devoid of brecciation, shock effects, or any evidence of secondary processes and is thus key for studying the early stages of planetary accretion and differentiation. However, chronometers used to establish the formation chronology of angrites (including D’Orbigny) yield discordant ages, either (i) suggesting that secondary processes could have disturbed the apparent formation ages or (ii) being taken as evidence of heterogeneous distribution of 26Al in the early solar system. Yet spinel is minimally susceptible to secondary parent body processes and therefore a reliable target for establishing precise 26Al–26Mg ages. Here, we present the first in situ 26Al–26Mg analyses of spinel and plagioclase in D’Orbigny. Individual mineral assemblages provide distinct ages: olivine–spinel shows a well-defined isochron with an initial Al ratio ([26Al/27Al]i) of (5.39 ± 0.85) × 10−6, indicating formation at 2.35 Myr after the formation of calcium–aluminum-rich inclusions (CAIs), whereas plagioclase–olivine defines an isochron with [26Al/27Al]i = (7.46 ± 1.87) × 10−7, implying formation at 4.40 Myr after CAIs, consistent with previous MC-ICP-MS studies. This temporal gap can be attributed to secondary processes such as metamorphic or impact-generated diffusion. Thus, D’Orbigny and other angrites do not represent an immaculate anchor for chronometric comparison. This complexity should be considered in future studies, especially when using D’Orbigny as an anchor to discuss the chronology of the early solar system.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/ad8654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Angrites originate from the early-formed differentiated angrite parent body. The pristine volcanic angrite D’Orbigny is devoid of brecciation, shock effects, or any evidence of secondary processes and is thus key for studying the early stages of planetary accretion and differentiation. However, chronometers used to establish the formation chronology of angrites (including D’Orbigny) yield discordant ages, either (i) suggesting that secondary processes could have disturbed the apparent formation ages or (ii) being taken as evidence of heterogeneous distribution of 26Al in the early solar system. Yet spinel is minimally susceptible to secondary parent body processes and therefore a reliable target for establishing precise 26Al–26Mg ages. Here, we present the first in situ 26Al–26Mg analyses of spinel and plagioclase in D’Orbigny. Individual mineral assemblages provide distinct ages: olivine–spinel shows a well-defined isochron with an initial Al ratio ([26Al/27Al]i) of (5.39 ± 0.85) × 10−6, indicating formation at 2.35 Myr after the formation of calcium–aluminum-rich inclusions (CAIs), whereas plagioclase–olivine defines an isochron with [26Al/27Al]i = (7.46 ± 1.87) × 10−7, implying formation at 4.40 Myr after CAIs, consistent with previous MC-ICP-MS studies. This temporal gap can be attributed to secondary processes such as metamorphic or impact-generated diffusion. Thus, D’Orbigny and other angrites do not represent an immaculate anchor for chronometric comparison. This complexity should be considered in future studies, especially when using D’Orbigny as an anchor to discuss the chronology of the early solar system.
从不符的 26Al 年龄推断出奥比尼岩浆岩的潜在年代紊乱
黑云母源于早期形成的分化黑云母母体。原始的奥比尼火山岩没有角砾岩化、冲击效应或任何次生过程的证据,因此是研究行星吸积和分化早期阶段的关键。然而,用于确定天使岩(包括 D'Orbigny)形成年代的年代测定仪得出的年龄并不一致,这要么(i)表明次生过程可能扰乱了表观形成年龄,要么(ii)被视为太阳系早期 26Al 异质分布的证据。然而,尖晶石受次生母体过程的影响很小,因此是确定 26Al-26Mg 精确年龄的可靠目标。在这里,我们首次对 D'Orbigny 的尖晶石和斜长石进行了 26Al-26Mg 原位分析。单个矿物组合提供了不同的年龄:橄榄石-尖晶石显示出清晰的等时线,初始铝比率([26Al/27Al]i)为 (5.39 ± 0.85) × 10-6,表明形成于 2.而斜长石-橄榄石的等时线为[26Al/27Al]i = (7.46 ± 1.87) × 10-7,这意味着它是在富钙铝包裹体形成后 4.40 Myr 形成的,这与之前的 MC-ICP-MS 研究一致。这一时间差可归因于变质或撞击产生的扩散等次生过程。因此,D'Orbigny 和其他安格尼岩并不是用于年代对比的完美无缺的锚。在今后的研究中,尤其是在使用奥比尼作为讨论早期太阳系年代学的锚时,应考虑到这种复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信