{"title":"Maturation of Human iPSC-Derived Cardiac Microfiber with Electrical Stimulation Device (Adv. Healthcare Mater. 27/2024)","authors":"Akari Masuda, Yuta Kurashina, Hidenori Tani, Yusuke Soma, Jumpei Muramatsu, Shun Itai, Shugo Tohyama, Hiroaki Onoe","doi":"10.1002/adhm.202470167","DOIUrl":null,"url":null,"abstract":"<p><b>In Vitro Cardiac Tissue</b></p><p>An electrical stimulation system for maturing hiPSC-derived microfiber-shaped cardiac tissue (cardiac microfibers: CMFs) is proposed. CMFs under electrical stimulation with different frequencies are examined to evaluate the maturation levels by their sarcomere lengths, electrophysiological characteristics, and gene expression. This model will contribute to the pathological research of unexplained cardiac diseases and pharmacologic testing. More details can be found in article 2303477 by Shugo Tohyama, Hiroaki Onoe, and co-workers.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":"13 27","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adhm.202470167","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adhm.202470167","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In Vitro Cardiac Tissue
An electrical stimulation system for maturing hiPSC-derived microfiber-shaped cardiac tissue (cardiac microfibers: CMFs) is proposed. CMFs under electrical stimulation with different frequencies are examined to evaluate the maturation levels by their sarcomere lengths, electrophysiological characteristics, and gene expression. This model will contribute to the pathological research of unexplained cardiac diseases and pharmacologic testing. More details can be found in article 2303477 by Shugo Tohyama, Hiroaki Onoe, and co-workers.
期刊介绍:
Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.