Zhiyuan Li, Yihan Zhou, Xuguang Wang, Hongbo Liu, Lu Cheng, Wenfeng Liu, Shengtao Li, Jiang Guo, Yang Xu
{"title":"Failure mechanism of metallized film capacitors under DC field superimposed AC harmonic: From equipment to material","authors":"Zhiyuan Li, Yihan Zhou, Xuguang Wang, Hongbo Liu, Lu Cheng, Wenfeng Liu, Shengtao Li, Jiang Guo, Yang Xu","doi":"10.1049/hve2.12453","DOIUrl":null,"url":null,"abstract":"<p>This study focuses on the degradation behaviour of metallised film capacitors, which are the essential components for the stability of converter valves in flexible ultra-high voltage direct current (HVDC) transmission systems. Through systematic experimentation, we investigated the failure mechanisms of MFCs under HVDC fields with superimposed harmonics, considering both equipment and material perspectives. The experiments subjected capacitors to 500 h of ageing under two conditions: a DC/AC-superimposed field with a constant DC component of 290 kV/mm and an AC ripple rate varying from 12% to 28%, and a control group aged solely under a DC field. Our findings indicate that capacitors aged under the DC/AC-superimposed field exhibited shorter lifespans and more significant capacitance loss than those aged under only the DC field. This difference in performance is primarily attributed to the distinct electrode loss behaviours observed under each ageing condition, which are key factors in the capacitors' capacitance decay. Moreover, the biaxially oriented polypropylene films in the DC-aged samples showed more severe deterioration, characterised by more noticeable molecular chain scission and reduced breakdown strength, compared to those aged under the DC/AC superimposed field. This difference is partly due to the moderate temperature increase caused by harmonics, which benefits the aggregation structure, and partly to the reduced molecular structure damage from the AC field.</p>","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":"9 5","pages":"1081-1089"},"PeriodicalIF":4.4000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.12453","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Voltage","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/hve2.12453","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This study focuses on the degradation behaviour of metallised film capacitors, which are the essential components for the stability of converter valves in flexible ultra-high voltage direct current (HVDC) transmission systems. Through systematic experimentation, we investigated the failure mechanisms of MFCs under HVDC fields with superimposed harmonics, considering both equipment and material perspectives. The experiments subjected capacitors to 500 h of ageing under two conditions: a DC/AC-superimposed field with a constant DC component of 290 kV/mm and an AC ripple rate varying from 12% to 28%, and a control group aged solely under a DC field. Our findings indicate that capacitors aged under the DC/AC-superimposed field exhibited shorter lifespans and more significant capacitance loss than those aged under only the DC field. This difference in performance is primarily attributed to the distinct electrode loss behaviours observed under each ageing condition, which are key factors in the capacitors' capacitance decay. Moreover, the biaxially oriented polypropylene films in the DC-aged samples showed more severe deterioration, characterised by more noticeable molecular chain scission and reduced breakdown strength, compared to those aged under the DC/AC superimposed field. This difference is partly due to the moderate temperature increase caused by harmonics, which benefits the aggregation structure, and partly to the reduced molecular structure damage from the AC field.
High VoltageEnergy-Energy Engineering and Power Technology
CiteScore
9.60
自引率
27.30%
发文量
97
审稿时长
21 weeks
期刊介绍:
High Voltage aims to attract original research papers and review articles. The scope covers high-voltage power engineering and high voltage applications, including experimental, computational (including simulation and modelling) and theoretical studies, which include:
Electrical Insulation
● Outdoor, indoor, solid, liquid and gas insulation
● Transient voltages and overvoltage protection
● Nano-dielectrics and new insulation materials
● Condition monitoring and maintenance
Discharge and plasmas, pulsed power
● Electrical discharge, plasma generation and applications
● Interactions of plasma with surfaces
● Pulsed power science and technology
High-field effects
● Computation, measurements of Intensive Electromagnetic Field
● Electromagnetic compatibility
● Biomedical effects
● Environmental effects and protection
High Voltage Engineering
● Design problems, testing and measuring techniques
● Equipment development and asset management
● Smart Grid, live line working
● AC/DC power electronics
● UHV power transmission
Special Issues. Call for papers:
Interface Charging Phenomena for Dielectric Materials - https://digital-library.theiet.org/files/HVE_CFP_ICP.pdf
Emerging Materials For High Voltage Applications - https://digital-library.theiet.org/files/HVE_CFP_EMHVA.pdf