Hasret Sahin, Abebe Asfaw Solomon, Arman Aghahosseini, Christian Breyer
{"title":"The impact of spatial representation in energy transition modelling on systemwide energy return on investment","authors":"Hasret Sahin, Abebe Asfaw Solomon, Arman Aghahosseini, Christian Breyer","doi":"10.1049/rpg2.13117","DOIUrl":null,"url":null,"abstract":"<p>Adopting aggregation techniques in power sector modelling led to disregarding the key characteristics of regions in terms of resource use, which may not completely capture the bottlenecks in the energy transition. This study provides a holistic approach to estimate its impact on the transition of the European power system from the perspective of energy return on investment (EROI) by using six energy transition scenarios based on three different spatial representations. The findings indicate that EROI trends are highly dependent on the spatial representation, technology selection and energy mix. Further additional capacities of complementary technologies along with an upsurge in renewable capacities drive EROI values down. Disregarding the physical distances in the energy modelling results in large EROI enhancement due to the artificial smoothing effect of the aggregation method. EROI values of the aggregated scenarios remain between 18 and 24 by 2050. In the case of 20 independent sub-regions, the lowest EROI is obtained at about 14 by 2050, due to the limitation on optimal resource utilisation. Interconnection of the sub-regions, which represents the best proximation to the real situation, increases the EROI to 17 by 2050.</p>","PeriodicalId":55000,"journal":{"name":"IET Renewable Power Generation","volume":"18 14","pages":"2706-2722"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13117","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Renewable Power Generation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.13117","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Adopting aggregation techniques in power sector modelling led to disregarding the key characteristics of regions in terms of resource use, which may not completely capture the bottlenecks in the energy transition. This study provides a holistic approach to estimate its impact on the transition of the European power system from the perspective of energy return on investment (EROI) by using six energy transition scenarios based on three different spatial representations. The findings indicate that EROI trends are highly dependent on the spatial representation, technology selection and energy mix. Further additional capacities of complementary technologies along with an upsurge in renewable capacities drive EROI values down. Disregarding the physical distances in the energy modelling results in large EROI enhancement due to the artificial smoothing effect of the aggregation method. EROI values of the aggregated scenarios remain between 18 and 24 by 2050. In the case of 20 independent sub-regions, the lowest EROI is obtained at about 14 by 2050, due to the limitation on optimal resource utilisation. Interconnection of the sub-regions, which represents the best proximation to the real situation, increases the EROI to 17 by 2050.
期刊介绍:
IET Renewable Power Generation (RPG) brings together the topics of renewable energy technology, power generation and systems integration, with techno-economic issues. All renewable energy generation technologies are within the scope of the journal.
Specific technology areas covered by the journal include:
Wind power technology and systems
Photovoltaics
Solar thermal power generation
Geothermal energy
Fuel cells
Wave power
Marine current energy
Biomass conversion and power generation
What differentiates RPG from technology specific journals is a concern with power generation and how the characteristics of the different renewable sources affect electrical power conversion, including power electronic design, integration in to power systems, and techno-economic issues. Other technologies that have a direct role in sustainable power generation such as fuel cells and energy storage are also covered, as are system control approaches such as demand side management, which facilitate the integration of renewable sources into power systems, both large and small.
The journal provides a forum for the presentation of new research, development and applications of renewable power generation. Demonstrations and experimentally based research are particularly valued, and modelling studies should as far as possible be validated so as to give confidence that the models are representative of real-world behavior. Research that explores issues where the characteristics of the renewable energy source and their control impact on the power conversion is welcome. Papers covering the wider areas of power system control and operation, including scheduling and protection that are central to the challenge of renewable power integration are particularly encouraged.
The journal is technology focused covering design, demonstration, modelling and analysis, but papers covering techno-economic issues are also of interest. Papers presenting new modelling and theory are welcome but this must be relevant to real power systems and power generation. Most papers are expected to include significant novelty of approach or application that has general applicability, and where appropriate include experimental results. Critical reviews of relevant topics are also invited and these would be expected to be comprehensive and fully referenced.
Current Special Issue. Call for papers:
Power Quality and Protection in Renewable Energy Systems and Microgrids - https://digital-library.theiet.org/files/IET_RPG_CFP_PQPRESM.pdf
Energy and Rail/Road Transportation Integrated Development - https://digital-library.theiet.org/files/IET_RPG_CFP_ERTID.pdf