Mohamad Issa Ibraheem, Mehdi Edrisi, Hassan Haes Alhelou, Mehdi Gholipour
{"title":"Fractional order slide mode droop control for simultaneous voltage and frequency regulation of AC microgrid","authors":"Mohamad Issa Ibraheem, Mehdi Edrisi, Hassan Haes Alhelou, Mehdi Gholipour","doi":"10.1049/rpg2.13067","DOIUrl":null,"url":null,"abstract":"<p>This research proposes the application of fractional-order sliding mode control (FOSMC) at the primary controller level to improve the stability of an islanded microgrid by adjusting its voltage and frequency. The control strategies used in the microgrid are performed in two levels (primary and secondary) in the islanded mode. Practically, most previous studies have worked to improve the primary controller. Droop control is one of the most commonly used methods at the primary level and is adopted in this study as well. The sliding mode control (SMC) strategy is normally used to control linear equations. Thus, the non-linear microgrid equations were transformed into some linear ones using the input-output feedback linearization technique. Further, a fractional sliding surface was acquainted. The sliding surface and FOSMC were designed to reject system uncertainties and organize the voltage and frequency. Design parameters were chosen using the Lyapunov stability theorem. The validation of the proposed method using Simulink-MATLAB confirms its effectiveness in enhancing level power sharing, regulating frequency, and maintaining voltage stability across the system.</p>","PeriodicalId":55000,"journal":{"name":"IET Renewable Power Generation","volume":"18 14","pages":"2629-2640"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13067","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Renewable Power Generation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.13067","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This research proposes the application of fractional-order sliding mode control (FOSMC) at the primary controller level to improve the stability of an islanded microgrid by adjusting its voltage and frequency. The control strategies used in the microgrid are performed in two levels (primary and secondary) in the islanded mode. Practically, most previous studies have worked to improve the primary controller. Droop control is one of the most commonly used methods at the primary level and is adopted in this study as well. The sliding mode control (SMC) strategy is normally used to control linear equations. Thus, the non-linear microgrid equations were transformed into some linear ones using the input-output feedback linearization technique. Further, a fractional sliding surface was acquainted. The sliding surface and FOSMC were designed to reject system uncertainties and organize the voltage and frequency. Design parameters were chosen using the Lyapunov stability theorem. The validation of the proposed method using Simulink-MATLAB confirms its effectiveness in enhancing level power sharing, regulating frequency, and maintaining voltage stability across the system.
期刊介绍:
IET Renewable Power Generation (RPG) brings together the topics of renewable energy technology, power generation and systems integration, with techno-economic issues. All renewable energy generation technologies are within the scope of the journal.
Specific technology areas covered by the journal include:
Wind power technology and systems
Photovoltaics
Solar thermal power generation
Geothermal energy
Fuel cells
Wave power
Marine current energy
Biomass conversion and power generation
What differentiates RPG from technology specific journals is a concern with power generation and how the characteristics of the different renewable sources affect electrical power conversion, including power electronic design, integration in to power systems, and techno-economic issues. Other technologies that have a direct role in sustainable power generation such as fuel cells and energy storage are also covered, as are system control approaches such as demand side management, which facilitate the integration of renewable sources into power systems, both large and small.
The journal provides a forum for the presentation of new research, development and applications of renewable power generation. Demonstrations and experimentally based research are particularly valued, and modelling studies should as far as possible be validated so as to give confidence that the models are representative of real-world behavior. Research that explores issues where the characteristics of the renewable energy source and their control impact on the power conversion is welcome. Papers covering the wider areas of power system control and operation, including scheduling and protection that are central to the challenge of renewable power integration are particularly encouraged.
The journal is technology focused covering design, demonstration, modelling and analysis, but papers covering techno-economic issues are also of interest. Papers presenting new modelling and theory are welcome but this must be relevant to real power systems and power generation. Most papers are expected to include significant novelty of approach or application that has general applicability, and where appropriate include experimental results. Critical reviews of relevant topics are also invited and these would be expected to be comprehensive and fully referenced.
Current Special Issue. Call for papers:
Power Quality and Protection in Renewable Energy Systems and Microgrids - https://digital-library.theiet.org/files/IET_RPG_CFP_PQPRESM.pdf
Energy and Rail/Road Transportation Integrated Development - https://digital-library.theiet.org/files/IET_RPG_CFP_ERTID.pdf