{"title":"A coordination control between energy storage based DVR and wind turbine for continuous fault ride-through","authors":"Xunjun Chen, Guangchao Geng, Quanyuan Jiang","doi":"10.1049/rpg2.13105","DOIUrl":null,"url":null,"abstract":"<p>Continuous fault ride-through (CFRT) issues often arise in wind power systems. CFRT results in continuous voltage fluctuations which is characterized by “initially decreasing and then increasing” and can significantly disrupt the normal operation of wind power systems. To mitigate CFRT related problems, one approach is the utilization of energy storage (ES) based dynamic voltage restorers (DVRs). Nevertheless, the prohibitive costs and substantial ES requirements hamper practical implementation. In this article, a control scheme incorporating adaptive mode switching and coordinated control is proposed. First, the adaptive mode switching control leverages the advantages of two DVR compensation methods to reduce the injected voltage amplitude. The mode switching is activated by the DC link voltage and utilizes the PQR transformation to unlock the phase-locked loop (PLL). Subsequently, an adaptive coordination coefficient is introduced, which considers the margin of ES regulation power and rotor inertia, to maintain power balance during CFRT. This proposed control strategy not only enables wind turbines to seamlessly ride through continuous faults without disconnecting from the grid but also leads to a reduction in the ES compensation requirement. To validate the effectiveness of the proposed approach, simulations based on Simulink and hardware-in-loop (HIL) experiments are conducted.</p>","PeriodicalId":55000,"journal":{"name":"IET Renewable Power Generation","volume":"18 14","pages":"2560-2574"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13105","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Renewable Power Generation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.13105","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Continuous fault ride-through (CFRT) issues often arise in wind power systems. CFRT results in continuous voltage fluctuations which is characterized by “initially decreasing and then increasing” and can significantly disrupt the normal operation of wind power systems. To mitigate CFRT related problems, one approach is the utilization of energy storage (ES) based dynamic voltage restorers (DVRs). Nevertheless, the prohibitive costs and substantial ES requirements hamper practical implementation. In this article, a control scheme incorporating adaptive mode switching and coordinated control is proposed. First, the adaptive mode switching control leverages the advantages of two DVR compensation methods to reduce the injected voltage amplitude. The mode switching is activated by the DC link voltage and utilizes the PQR transformation to unlock the phase-locked loop (PLL). Subsequently, an adaptive coordination coefficient is introduced, which considers the margin of ES regulation power and rotor inertia, to maintain power balance during CFRT. This proposed control strategy not only enables wind turbines to seamlessly ride through continuous faults without disconnecting from the grid but also leads to a reduction in the ES compensation requirement. To validate the effectiveness of the proposed approach, simulations based on Simulink and hardware-in-loop (HIL) experiments are conducted.
期刊介绍:
IET Renewable Power Generation (RPG) brings together the topics of renewable energy technology, power generation and systems integration, with techno-economic issues. All renewable energy generation technologies are within the scope of the journal.
Specific technology areas covered by the journal include:
Wind power technology and systems
Photovoltaics
Solar thermal power generation
Geothermal energy
Fuel cells
Wave power
Marine current energy
Biomass conversion and power generation
What differentiates RPG from technology specific journals is a concern with power generation and how the characteristics of the different renewable sources affect electrical power conversion, including power electronic design, integration in to power systems, and techno-economic issues. Other technologies that have a direct role in sustainable power generation such as fuel cells and energy storage are also covered, as are system control approaches such as demand side management, which facilitate the integration of renewable sources into power systems, both large and small.
The journal provides a forum for the presentation of new research, development and applications of renewable power generation. Demonstrations and experimentally based research are particularly valued, and modelling studies should as far as possible be validated so as to give confidence that the models are representative of real-world behavior. Research that explores issues where the characteristics of the renewable energy source and their control impact on the power conversion is welcome. Papers covering the wider areas of power system control and operation, including scheduling and protection that are central to the challenge of renewable power integration are particularly encouraged.
The journal is technology focused covering design, demonstration, modelling and analysis, but papers covering techno-economic issues are also of interest. Papers presenting new modelling and theory are welcome but this must be relevant to real power systems and power generation. Most papers are expected to include significant novelty of approach or application that has general applicability, and where appropriate include experimental results. Critical reviews of relevant topics are also invited and these would be expected to be comprehensive and fully referenced.
Current Special Issue. Call for papers:
Power Quality and Protection in Renewable Energy Systems and Microgrids - https://digital-library.theiet.org/files/IET_RPG_CFP_PQPRESM.pdf
Energy and Rail/Road Transportation Integrated Development - https://digital-library.theiet.org/files/IET_RPG_CFP_ERTID.pdf