Rock pore structure coupled with fluid pressure plays an important role in controlling fault slip behavior. Observation of fluid-induced seismicity in geoenergy extraction has raised fundamental questions about the physics of fault rock structure and fault frictional stability in the presence of fluid. Here, we change the pore structure of faults by thermal treatment and report on the frictional stability of granite faults with pore evolution and pore fluid pressure in velocity stepping experiments under the rate-and-state framework, where the variation of pore fluid is monitored. The experiments under constant fluid pressure show that pore structure propagation leads to an increase in friction coefficient from 0.71 to 0.78. As the degree of pore propagation increases, the drained fault exhibits a transition from velocity strengthening to weakening behavior. The decrease in frictional stability could be caused by the coupling between the pore fluid and the well-connected pores, namely “fluid oscillation”. Pore pressure overpressurization could develop and cause non-uniform stress distribution along the fault surface due to pore fluid oscillation at velocity steps. The time required to equilibrate fluid pressure could be prolonged by fluid oscillation, leading to intrinsic velocity strengthening behavior appearing as velocity weakening. The decrease in rate-and-state parameter with elevating pore fluid pressure on high-porosity fault corroborates the fluid-induced fault destabilization. The fluid oscillation at the greater pore pressure could be responsible for fault reactivation. Therefore, the coupling effect of rock pore structure with pore fluid could be a potential mechanism governing fault frictional stability.