Shaping hollow spherical assemblies for enhanced Cu0/Cu+ interface to boost C2+ selectivity in CO2 electroreduction

IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yu Li  (, ), Haojun Shi  (, ), Congcong Li  (, ), Zhongliang Liu  (, ), Weizheng Tang  (, ), Tingting Zhang  (, ), Shixin Yin  (, ), Huihui Li  (, ), Chunzhong Li  (, )
{"title":"Shaping hollow spherical assemblies for enhanced Cu0/Cu+ interface to boost C2+ selectivity in CO2 electroreduction","authors":"Yu Li \n (,&nbsp;),&nbsp;Haojun Shi \n (,&nbsp;),&nbsp;Congcong Li \n (,&nbsp;),&nbsp;Zhongliang Liu \n (,&nbsp;),&nbsp;Weizheng Tang \n (,&nbsp;),&nbsp;Tingting Zhang \n (,&nbsp;),&nbsp;Shixin Yin \n (,&nbsp;),&nbsp;Huihui Li \n (,&nbsp;),&nbsp;Chunzhong Li \n (,&nbsp;)","doi":"10.1007/s40843-024-3057-1","DOIUrl":null,"url":null,"abstract":"<div><p>The creation of Cu<sup>0</sup>/Cu<sup>+</sup> interface over Cu-based catalysts is known to facilitate the production of multi-carbon (C<sub>2+</sub>) products during CO<sub>2</sub> reduction reaction (CO<sub>2</sub> RR). However, the Cu<sup>+</sup> moieties exhibit high susceptibility towards reduction into Cu<sup>0</sup> at a high current density. Thus, a comprehensive understanding and rational shaping strategy for the construction and stabilization of Cu<sup>0</sup>/Cu<sup>+</sup> interface in Cu-based catalysts is imperative. Herein, we proposed a controllable “nanoparticle assembly” strategy to obtain hollow spherical assemblies (HSA) composed of numerous Cu<sub>2</sub>O nanoparticles (HSA-Cu<sub>2</sub>O). The HSA-Cu<sub>2</sub>O catalysts significantly enhance the selectivity of C<sub>2+</sub> products, resulting in an impressive overall Faraday efficiency (FE) of 79.2% ± 0.7% at a partial current density of 317.1 mA cm<sup>−2</sup>. The HSA-Cu<sub>2</sub>O catalysts undergo <i>in-situ</i> electrochemically reconstruction during CO<sub>2</sub>RR, achieving Cu<sup>0</sup>/Cu<sup>+</sup> interfacial sites with a high density. The Auger electron spectra, <i>in-situ</i> Raman, and morphological evolution studies have confirmed that the combination of the Cu<sup>0</sup>/Cu<sup>+</sup> interface and hollow sphere architecture facilitated the concentration of *CO intermediates, thereby promoting C–C dimerization to boost C<sub>2+</sub> selectivity in CO<sub>2</sub>RR.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"67 11","pages":"3596 - 3601"},"PeriodicalIF":6.8000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3057-1","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The creation of Cu0/Cu+ interface over Cu-based catalysts is known to facilitate the production of multi-carbon (C2+) products during CO2 reduction reaction (CO2 RR). However, the Cu+ moieties exhibit high susceptibility towards reduction into Cu0 at a high current density. Thus, a comprehensive understanding and rational shaping strategy for the construction and stabilization of Cu0/Cu+ interface in Cu-based catalysts is imperative. Herein, we proposed a controllable “nanoparticle assembly” strategy to obtain hollow spherical assemblies (HSA) composed of numerous Cu2O nanoparticles (HSA-Cu2O). The HSA-Cu2O catalysts significantly enhance the selectivity of C2+ products, resulting in an impressive overall Faraday efficiency (FE) of 79.2% ± 0.7% at a partial current density of 317.1 mA cm−2. The HSA-Cu2O catalysts undergo in-situ electrochemically reconstruction during CO2RR, achieving Cu0/Cu+ interfacial sites with a high density. The Auger electron spectra, in-situ Raman, and morphological evolution studies have confirmed that the combination of the Cu0/Cu+ interface and hollow sphere architecture facilitated the concentration of *CO intermediates, thereby promoting C–C dimerization to boost C2+ selectivity in CO2RR.

塑造中空球形组件以增强 Cu0/Cu+ 接口,从而提高 CO2 电还原中的 C2+ 选择性
众所周知,在铜基催化剂上形成 Cu0/Cu+ 界面有助于在二氧化碳还原反应(CO2 RR)中生产多碳(C2+)产物。然而,在高电流密度下,Cu+ 分子极易被还原成 Cu0。因此,在铜基催化剂中构建和稳定 Cu0/Cu+ 界面的全面理解和合理塑造策略势在必行。在此,我们提出了一种可控的 "纳米颗粒组装 "策略,以获得由大量 Cu2O 纳米颗粒组成的空心球形组装体(HSA)(HSA-Cu2O)。HSA-Cu2O 催化剂显著提高了 C2+ 产物的选择性,在局部电流密度为 317.1 mA cm-2 的条件下,总体法拉第效率 (FE) 达到了惊人的 79.2% ± 0.7%。在 CO2RR 过程中,HSA-Cu2O 催化剂进行了原位电化学重构,实现了高密度的 Cu0/Cu+ 界面位点。欧杰电子能谱、原位拉曼和形态演变研究证实,Cu0/Cu+界面与空心球结构的结合促进了*CO中间体的富集,从而促进了 C-C 二聚化,提高了 CO2RR 中 C2+ 的选择性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信