Lattice reconstruction for mixed-halide blue perovskite light-emitting diodes with high brightness, outstanding color stability and low efficiency roll-off
IF 6.8 2区 材料科学Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jionghua Wu
(, ), Renjie Wang
(, ), Rui Zhang
(, ), Giuseppe Portale, Eduardo Solano, Xiaoke Liu
(, ), Feng Gao
(, )
{"title":"Lattice reconstruction for mixed-halide blue perovskite light-emitting diodes with high brightness, outstanding color stability and low efficiency roll-off","authors":"Jionghua Wu \n (, ), Renjie Wang \n (, ), Rui Zhang \n (, ), Giuseppe Portale, Eduardo Solano, Xiaoke Liu \n (, ), Feng Gao \n (, )","doi":"10.1007/s40843-024-3080-5","DOIUrl":null,"url":null,"abstract":"<div><p>We report a simple, effective, and universal lattice reconstruction approach to improve the quality of perovskite films by using nonpolar solvents with high Gutmann donor numbers (DNs). We find that high-DN nonpolar solvents, for instance, ethyl acetate, can interact with perovskite precursors. Such a solvent can make the perovskite lattice more ordered and “harder” and promote the formation of heterostructures with low-dimensional perovskite impurities and residual solvent molecules. As a result, the lattice-reconstructed perovskite films exhibit reduced defect densities and suppressed ion migration. The resultant mixed-halide blue perovskite light-emitting diodes (PeLEDs) show greatly enhanced tolerance to high driving current densities and voltages, demonstrating high brightness, outstanding color stability and low efficiency roll-off. Our work provides a deep understanding of the interactions between nonpolar solvents and perovskites and offers useful guidelines for further development of high-power PeLEDs.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"67 11","pages":"3553 - 3560"},"PeriodicalIF":6.8000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40843-024-3080-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3080-5","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We report a simple, effective, and universal lattice reconstruction approach to improve the quality of perovskite films by using nonpolar solvents with high Gutmann donor numbers (DNs). We find that high-DN nonpolar solvents, for instance, ethyl acetate, can interact with perovskite precursors. Such a solvent can make the perovskite lattice more ordered and “harder” and promote the formation of heterostructures with low-dimensional perovskite impurities and residual solvent molecules. As a result, the lattice-reconstructed perovskite films exhibit reduced defect densities and suppressed ion migration. The resultant mixed-halide blue perovskite light-emitting diodes (PeLEDs) show greatly enhanced tolerance to high driving current densities and voltages, demonstrating high brightness, outstanding color stability and low efficiency roll-off. Our work provides a deep understanding of the interactions between nonpolar solvents and perovskites and offers useful guidelines for further development of high-power PeLEDs.
期刊介绍:
Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.