Yinghui Xue, Tianjie Xu, Yao Guo, Haixiang Song, Yuhua Wang, Zhanhu Guo, Jianxin Li, Huihui Zhao, Xiaojing Bai, Changwei Lai
{"title":"Amorphous/crystalline heterostructured indium (III) sulfide/carbon with favorable kinetics and high capacity for lithium storage","authors":"Yinghui Xue, Tianjie Xu, Yao Guo, Haixiang Song, Yuhua Wang, Zhanhu Guo, Jianxin Li, Huihui Zhao, Xiaojing Bai, Changwei Lai","doi":"10.1007/s42114-024-01041-y","DOIUrl":null,"url":null,"abstract":"<div><p>Nanostructured metal sulfides (MSs) are considered prospective anodes for Li-ion batteries (LIBs) due to their high specific capacity and abundant raw materials on Earth. Nevertheless, the poor conductivity and volume expansion hinder their application. Here, we report the design of amorphous/crystalline indium sulfide nanotubes coated by carbon, in which MIL-68 (In) metal–organic frameworks (MOF) are used as a precursor to generate In<sub>2</sub>S<sub>3</sub>/carbon (In<sub>2</sub>S<sub>3</sub>/C) through a solvothermal process. The construction of amorphous/crystalline structure not only combines the advantages of abundant ion channels of amorphous structure, but also has high crystal conductivity and promotes ion transport. The In<sub>2</sub>S<sub>3</sub>/C anode of LIBs exhibits excellent performance of 835 mAh g<sup>−1</sup> at the current density of 0.5 A g<sup>−1</sup> after 500 cycles. In<sub>2</sub>S<sub>3</sub>/C also shows outstanding long-term performance with 717 mAh g<sup>−1</sup> at 2 A g<sup>−1</sup>. The lithium storage mechanism is elucidated through kinetic analysis and ex situ X-ray photoelectron spectroscopy investigations. Further density functional theory (DFT) calculations indicate that In<sub>2</sub>S<sub>3</sub>/C electrodes have low adsorption energies and fast diffusion kinetics. In a word, the MOF-derived amorphous/crystalline In<sub>2</sub>S<sub>3</sub>/C exhibits better electrochemical performances than commercial In<sub>2</sub>S<sub>3</sub>. This research will inspire the exploration of MSs as well as detect potential “diamonds in the rough.”</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"7 6","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-01041-y","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Nanostructured metal sulfides (MSs) are considered prospective anodes for Li-ion batteries (LIBs) due to their high specific capacity and abundant raw materials on Earth. Nevertheless, the poor conductivity and volume expansion hinder their application. Here, we report the design of amorphous/crystalline indium sulfide nanotubes coated by carbon, in which MIL-68 (In) metal–organic frameworks (MOF) are used as a precursor to generate In2S3/carbon (In2S3/C) through a solvothermal process. The construction of amorphous/crystalline structure not only combines the advantages of abundant ion channels of amorphous structure, but also has high crystal conductivity and promotes ion transport. The In2S3/C anode of LIBs exhibits excellent performance of 835 mAh g−1 at the current density of 0.5 A g−1 after 500 cycles. In2S3/C also shows outstanding long-term performance with 717 mAh g−1 at 2 A g−1. The lithium storage mechanism is elucidated through kinetic analysis and ex situ X-ray photoelectron spectroscopy investigations. Further density functional theory (DFT) calculations indicate that In2S3/C electrodes have low adsorption energies and fast diffusion kinetics. In a word, the MOF-derived amorphous/crystalline In2S3/C exhibits better electrochemical performances than commercial In2S3. This research will inspire the exploration of MSs as well as detect potential “diamonds in the rough.”
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.