Abdul Hadi Mehmood
(, ), Faiz Ullah
(, ), Baoli Dong
(, ), Hong Liu
(, )
{"title":"Reaction-based small-molecule fluorescent probes for endoplasmic reticulum- and mitochondria-targeted biosensing and bioimaging","authors":"Abdul Hadi Mehmood \n (, ), Faiz Ullah \n (, ), Baoli Dong \n (, ), Hong Liu \n (, )","doi":"10.1007/s40843-024-3097-4","DOIUrl":null,"url":null,"abstract":"<div><p>Fluorescent probes have revolutionized modern biological research by making it possible to observe and measure an extensive range of cellular and subcellular processes. Among the subcellular compartments, the endoplasmic reticulum (ER) and mitochondria (MT) remain exciting targets owing to the information they reveal about the cellular processes. Consequently, monitoring pH, polarity, viscosity, metal ions, reactive nitrogen species (RNS), reactive sulfur species (RSS) and reactive oxygen species (ROS) in ER and MT with fluorescent probes is of great importance to understand the cellar and subcellular process. Recent years, redox-sensitive probes and ion probes are designed and synthesized for the detection and quantification of RNS/RSS/ROS (collectively as reactive oxygen/nitrogen/sulfur species, RONSS) and metal ions within ER and MT. These probes provide powerful tools for the researchers to learn more about the complex relationship between cellular redox homeostasis and organelle function, and understand the mechanism of disease processes and pathogenesis for developing potential treatments. In this review, the design principles, synthesis methods, targeting mechanism for ER- and MT-targeted RONSS, and metal-ion-specific fluorescent probes are discussed. The recent progress for the synthesis and applications of ER/MT-targeted probes, and their applications for monitoring cellular and subcellular processes are summarized, and the development trends and application prospects of the probes are analyzed.</p></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"67 11","pages":"3491 - 3530"},"PeriodicalIF":6.8000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3097-4","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Fluorescent probes have revolutionized modern biological research by making it possible to observe and measure an extensive range of cellular and subcellular processes. Among the subcellular compartments, the endoplasmic reticulum (ER) and mitochondria (MT) remain exciting targets owing to the information they reveal about the cellular processes. Consequently, monitoring pH, polarity, viscosity, metal ions, reactive nitrogen species (RNS), reactive sulfur species (RSS) and reactive oxygen species (ROS) in ER and MT with fluorescent probes is of great importance to understand the cellar and subcellular process. Recent years, redox-sensitive probes and ion probes are designed and synthesized for the detection and quantification of RNS/RSS/ROS (collectively as reactive oxygen/nitrogen/sulfur species, RONSS) and metal ions within ER and MT. These probes provide powerful tools for the researchers to learn more about the complex relationship between cellular redox homeostasis and organelle function, and understand the mechanism of disease processes and pathogenesis for developing potential treatments. In this review, the design principles, synthesis methods, targeting mechanism for ER- and MT-targeted RONSS, and metal-ion-specific fluorescent probes are discussed. The recent progress for the synthesis and applications of ER/MT-targeted probes, and their applications for monitoring cellular and subcellular processes are summarized, and the development trends and application prospects of the probes are analyzed.
期刊介绍:
Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.