Quantum Rényi Entropy with Localization Characteristics

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Qi Han, Shuai Wang, Lijie Gou, Rong Zhang
{"title":"Quantum Rényi Entropy with Localization Characteristics","authors":"Qi Han,&nbsp;Shuai Wang,&nbsp;Lijie Gou,&nbsp;Rong Zhang","doi":"10.1007/s10773-024-05816-3","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a localized treatment of quantum Rényi entropy. Specifically, based on the localized characteristics of Local Quantum Bernoulli Noises (LQBNs), a new definition of quantum Rényi entropy, that is, quantum Rényi entropy with localization characteristics, is given through the local density operator constructed by local conservative operators <span>\\(l_{k}^{\\circ } \\)</span>. We also verify that this new definition possesses properties such as unitary invariance, additivity, monotonicity, and weak subadditivity. Furthermore, through the monotonicity of the local quantum Rényi entropy, we derive the local quantum Rényi minimum entropy and the local quantum Rényi maximum entropy. The local quantum Rényi entropy can be used to study quantum entanglement and coherence. For instance, in the contexts of quantum phase transitions and quantum state transmission, the local quantum Rényi entropy can provide important insights into the flow of information and interactions within quantum systems.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"63 11","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-024-05816-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a localized treatment of quantum Rényi entropy. Specifically, based on the localized characteristics of Local Quantum Bernoulli Noises (LQBNs), a new definition of quantum Rényi entropy, that is, quantum Rényi entropy with localization characteristics, is given through the local density operator constructed by local conservative operators \(l_{k}^{\circ } \). We also verify that this new definition possesses properties such as unitary invariance, additivity, monotonicity, and weak subadditivity. Furthermore, through the monotonicity of the local quantum Rényi entropy, we derive the local quantum Rényi minimum entropy and the local quantum Rényi maximum entropy. The local quantum Rényi entropy can be used to study quantum entanglement and coherence. For instance, in the contexts of quantum phase transitions and quantum state transmission, the local quantum Rényi entropy can provide important insights into the flow of information and interactions within quantum systems.

具有定位特征的量子雷尼熵
本文提出了量子雷尼熵的局域化处理方法。具体来说,基于局域量子伯努利噪声(LQBNs)的局域化特征,通过局域保守算子 \(l_{k}^{\circ } \) 构造的局域密度算子,给出了量子雷尼熵的新定义,即具有局域化特征的量子雷尼熵。我们还验证了这个新定义具有单元不变性、可加性、单调性和弱亚加性等性质。此外,通过局部量子雷尼熵的单调性,我们推导出了局部量子雷尼最小熵和局部量子雷尼最大熵。局域量子雷尼熵可用于研究量子纠缠和相干性。例如,在量子相变和量子态传输的背景下,局域量子雷尼熵可以为量子系统内部的信息流和相互作用提供重要见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
21.40%
发文量
258
审稿时长
3.3 months
期刊介绍: International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信