Hydrogen embrittlement of retrogression-reaged 7xxx-series aluminum alloys—a comprehensive review

IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mohamed Qassem, Amir Ershad Fanaei, Mousa Javidani
{"title":"Hydrogen embrittlement of retrogression-reaged 7xxx-series aluminum alloys—a comprehensive review","authors":"Mohamed Qassem,&nbsp;Amir Ershad Fanaei,&nbsp;Mousa Javidani","doi":"10.1007/s40843-024-3096-0","DOIUrl":null,"url":null,"abstract":"<div><p>Hydrogen embrittlement remains a crucial concern in industries that rely on high-strength materials. Exposure to hydrogen poses a significant threat to the mechanical integrity of such materials. This review article briefly discusses the fundamentals of hydrogen embrittlement, including its mechanisms and the effects of various factors, such as chemical composition and environmental conditions. Several heat treatments have been developed to eliminate the risk of hydrogen embrittlement. Among various suggested heat treatments, the retrogression-reaging (RRA) treatment has proven effective in optimizing the balance between mechanical properties and resistance to hydrogen embrittlement. This review highlights the role of RRA treatment in modifying the microstructure of Al-Zn-Mg alloys to enhance their ability to resist hydrogen embrittlement, building on existing literature. An interesting aspect explored in this article is the intricate relationship between pre-deformation and subsequent RRA treatment. Additionally, the review discusses the use of RRA as a post-weld heat treatment to mitigate the susceptibility of weldments to hydrogen embrittlement. A comprehensive exploration of these topics is beneficial for a thorough understanding of the multifaceted functions of RRA treatment. However, despite its advantages, the widespread adoption of RRA treatment in the industry is hindered by certain challenges. This review addresses these challenges, offering insights into the latest strategies to overcome them.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"67 11","pages":"3468 - 3490"},"PeriodicalIF":6.8000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3096-0","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen embrittlement remains a crucial concern in industries that rely on high-strength materials. Exposure to hydrogen poses a significant threat to the mechanical integrity of such materials. This review article briefly discusses the fundamentals of hydrogen embrittlement, including its mechanisms and the effects of various factors, such as chemical composition and environmental conditions. Several heat treatments have been developed to eliminate the risk of hydrogen embrittlement. Among various suggested heat treatments, the retrogression-reaging (RRA) treatment has proven effective in optimizing the balance between mechanical properties and resistance to hydrogen embrittlement. This review highlights the role of RRA treatment in modifying the microstructure of Al-Zn-Mg alloys to enhance their ability to resist hydrogen embrittlement, building on existing literature. An interesting aspect explored in this article is the intricate relationship between pre-deformation and subsequent RRA treatment. Additionally, the review discusses the use of RRA as a post-weld heat treatment to mitigate the susceptibility of weldments to hydrogen embrittlement. A comprehensive exploration of these topics is beneficial for a thorough understanding of the multifaceted functions of RRA treatment. However, despite its advantages, the widespread adoption of RRA treatment in the industry is hindered by certain challenges. This review addresses these challenges, offering insights into the latest strategies to overcome them.

逆行时效 7xxx 系列铝合金的氢脆--综合评述
在依赖高强度材料的行业中,氢脆仍然是一个重要问题。暴露在氢气中会对此类材料的机械完整性造成严重威胁。这篇综述文章简要讨论了氢脆的基本原理,包括其机理以及化学成分和环境条件等各种因素的影响。为消除氢脆风险,已开发出几种热处理方法。在各种建议的热处理方法中,逆行-时效(RRA)处理已被证明能有效优化机械性能和抗氢脆性能之间的平衡。本综述以现有文献为基础,重点介绍了 RRA 处理在改变铝-锌-镁合金微观结构以增强其抗氢脆能力方面的作用。本文探讨的一个有趣方面是预变形与后续 RRA 处理之间的复杂关系。此外,综述还讨论了使用 RRA 作为焊后热处理来减轻焊接件对氢脆的敏感性。对这些主题的全面探讨有助于深入了解 RRA 处理的多方面功能。然而,尽管 RRA 处理具有诸多优势,但其在行业中的广泛应用却受到某些挑战的阻碍。本综述探讨了这些挑战,并就克服这些挑战的最新战略提出了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信