Mohamed Qassem, Amir Ershad Fanaei, Mousa Javidani
{"title":"Hydrogen embrittlement of retrogression-reaged 7xxx-series aluminum alloys—a comprehensive review","authors":"Mohamed Qassem, Amir Ershad Fanaei, Mousa Javidani","doi":"10.1007/s40843-024-3096-0","DOIUrl":null,"url":null,"abstract":"<div><p>Hydrogen embrittlement remains a crucial concern in industries that rely on high-strength materials. Exposure to hydrogen poses a significant threat to the mechanical integrity of such materials. This review article briefly discusses the fundamentals of hydrogen embrittlement, including its mechanisms and the effects of various factors, such as chemical composition and environmental conditions. Several heat treatments have been developed to eliminate the risk of hydrogen embrittlement. Among various suggested heat treatments, the retrogression-reaging (RRA) treatment has proven effective in optimizing the balance between mechanical properties and resistance to hydrogen embrittlement. This review highlights the role of RRA treatment in modifying the microstructure of Al-Zn-Mg alloys to enhance their ability to resist hydrogen embrittlement, building on existing literature. An interesting aspect explored in this article is the intricate relationship between pre-deformation and subsequent RRA treatment. Additionally, the review discusses the use of RRA as a post-weld heat treatment to mitigate the susceptibility of weldments to hydrogen embrittlement. A comprehensive exploration of these topics is beneficial for a thorough understanding of the multifaceted functions of RRA treatment. However, despite its advantages, the widespread adoption of RRA treatment in the industry is hindered by certain challenges. This review addresses these challenges, offering insights into the latest strategies to overcome them.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"67 11","pages":"3468 - 3490"},"PeriodicalIF":6.8000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3096-0","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen embrittlement remains a crucial concern in industries that rely on high-strength materials. Exposure to hydrogen poses a significant threat to the mechanical integrity of such materials. This review article briefly discusses the fundamentals of hydrogen embrittlement, including its mechanisms and the effects of various factors, such as chemical composition and environmental conditions. Several heat treatments have been developed to eliminate the risk of hydrogen embrittlement. Among various suggested heat treatments, the retrogression-reaging (RRA) treatment has proven effective in optimizing the balance between mechanical properties and resistance to hydrogen embrittlement. This review highlights the role of RRA treatment in modifying the microstructure of Al-Zn-Mg alloys to enhance their ability to resist hydrogen embrittlement, building on existing literature. An interesting aspect explored in this article is the intricate relationship between pre-deformation and subsequent RRA treatment. Additionally, the review discusses the use of RRA as a post-weld heat treatment to mitigate the susceptibility of weldments to hydrogen embrittlement. A comprehensive exploration of these topics is beneficial for a thorough understanding of the multifaceted functions of RRA treatment. However, despite its advantages, the widespread adoption of RRA treatment in the industry is hindered by certain challenges. This review addresses these challenges, offering insights into the latest strategies to overcome them.
期刊介绍:
Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.