An ensemble model for rapid quantitative determination of vanadium (V) in petroleum coke by laser-induced breakdown spectroscopy

IF 3.1 2区 化学 Q2 CHEMISTRY, ANALYTICAL
Hongkun Du, Tengfei Sun, Shaoying Ke, Dongfeng Qi, Wei Zhang, Juan Wei, Bing Yang and Hongyu Zheng
{"title":"An ensemble model for rapid quantitative determination of vanadium (V) in petroleum coke by laser-induced breakdown spectroscopy","authors":"Hongkun Du, Tengfei Sun, Shaoying Ke, Dongfeng Qi, Wei Zhang, Juan Wei, Bing Yang and Hongyu Zheng","doi":"10.1039/D4JA00300D","DOIUrl":null,"url":null,"abstract":"<p >Precise detection and analysis of trace elements in materials are critical for various industrial applications. This study integrates laser-induced breakdown spectroscopy (LIBS) with advanced machine learning algorithms—random forest (RF) and gradient boosting decision tree (GBDT)—to develop an ensemble model for the rapid quantitative prediction of vanadium (V) in petroleum coke. A 1064 nm laser was employed to ablate petroleum coke samples, generating plasma, with the resultant spectral data collected <em>via</em> a spectrometer. The spectral data underwent preprocessing to isolate vanadium-specific information. Optimization of the regression prediction parameters for RF and GBDT was achieved through a recursive feature elimination method. Subsequently, an ensemble model was constructed to predict vanadium concentration. The results indicate that the ensemble model demonstrates excellent predictive performance, with <em>R</em><small><sup>2</sup></small> = 0.99976, RMSECV = 3.47145 mg kg<small><sup>−1</sup></small>, and RMSEP = 3.38779 mg kg<small><sup>−1</sup></small>. Hence, integrating RF and GBDT with LIBS offers a robust and precise methodology for vanadium concentration detection and analysis, providing significant insights and methods for monitoring trace element concentrations in petroleum coke.</p>","PeriodicalId":81,"journal":{"name":"Journal of Analytical Atomic Spectrometry","volume":" 11","pages":" 2841-2855"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Atomic Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ja/d4ja00300d","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Precise detection and analysis of trace elements in materials are critical for various industrial applications. This study integrates laser-induced breakdown spectroscopy (LIBS) with advanced machine learning algorithms—random forest (RF) and gradient boosting decision tree (GBDT)—to develop an ensemble model for the rapid quantitative prediction of vanadium (V) in petroleum coke. A 1064 nm laser was employed to ablate petroleum coke samples, generating plasma, with the resultant spectral data collected via a spectrometer. The spectral data underwent preprocessing to isolate vanadium-specific information. Optimization of the regression prediction parameters for RF and GBDT was achieved through a recursive feature elimination method. Subsequently, an ensemble model was constructed to predict vanadium concentration. The results indicate that the ensemble model demonstrates excellent predictive performance, with R2 = 0.99976, RMSECV = 3.47145 mg kg−1, and RMSEP = 3.38779 mg kg−1. Hence, integrating RF and GBDT with LIBS offers a robust and precise methodology for vanadium concentration detection and analysis, providing significant insights and methods for monitoring trace element concentrations in petroleum coke.

Abstract Image

利用激光诱导击穿光谱快速定量测定石油焦中钒(V)的集合模型
材料中痕量元素的精确检测和分析对于各种工业应用至关重要。本研究将激光诱导击穿光谱(LIBS)与先进的机器学习算法--随机森林(RF)和梯度提升决策树(GBDT)--结合起来,开发了一个用于快速定量预测石油焦中钒(V)含量的集合模型。使用 1064 nm 激光烧蚀石油焦样品,产生等离子体,并通过光谱仪收集由此产生的光谱数据。光谱数据经过预处理,以分离出钒的特定信息。通过递归特征消除法优化了射频和 GBDT 的回归预测参数。随后,构建了一个集合模型来预测钒浓度。结果表明,该集合模型具有出色的预测性能,R2 = 0.99976,RMSECV = 3.47145 mg kg-1,RMSEP = 3.38779 mg kg-1。因此,将射频和 GBDT 与 LIBS 结合在一起为钒浓度检测和分析提供了一种稳健而精确的方法,为监测石油焦中的痕量元素浓度提供了重要的见解和方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
26.50%
发文量
228
审稿时长
1.7 months
期刊介绍: Innovative research on the fundamental theory and application of spectrometric techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信