Bingyan Qu , Changrui Zhu , Gaoliang Huang , Yang Jiang , Rulong Zhou , Lei Wang
{"title":"Blue-emitting long-persistent luminescence phosphor Pb2+-doped CsCdCl3","authors":"Bingyan Qu , Changrui Zhu , Gaoliang Huang , Yang Jiang , Rulong Zhou , Lei Wang","doi":"10.1016/j.jlumin.2024.120957","DOIUrl":null,"url":null,"abstract":"<div><div>In our traditional impressions, the emission spectra of Pb<sup>2+</sup> ions usually fall predominantly within the UV region. In this work, we find when coordinated with haloid Cl<sup>−</sup> ions in CsCdCl<sub>3</sub>, the Pb<sup>2+</sup> ions could demonstrate bright blue emission from 350 to 500 nm with maximum peaking at about 412 nm under the excitation of 250–320 nm light. This emission can be assigned to <sup>3</sup>P<sub>1</sub> → <sup>1</sup>S<sub>0</sub> transition of Pb<sup>2+</sup> ions. More interestingly, this all-inorganic metal halide compound CsCdCl<sub>3</sub>:Pb<sup>2+</sup> exhibits a long persistent luminescence (LPL) lasting 1050 s, endowed with application potential in the information storage and function of analysis and detection. The LPL mechanism of Pb<sup>2+</sup> in CsCdCl<sub>3</sub> has been studied by thermoluminescence (TL) measurements and the First-principle calculation, which dominate that the 6p levels of Pb<sup>2+</sup> are just below the conduction band by about 0.6 eV. The excited electrons can travel across these 6p levels and the electron traps through the conduction band thermally, delaying the emission temporarily and producing the afterglow finally. Our finding in this work proves the potential of Pb<sup>2+</sup> activated phosphors in visible region and provides a unique approach to construct Pb<sup>2+</sup> doped LPL phosphors.</div></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":"277 ","pages":"Article 120957"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Luminescence","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022231324005210","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
In our traditional impressions, the emission spectra of Pb2+ ions usually fall predominantly within the UV region. In this work, we find when coordinated with haloid Cl− ions in CsCdCl3, the Pb2+ ions could demonstrate bright blue emission from 350 to 500 nm with maximum peaking at about 412 nm under the excitation of 250–320 nm light. This emission can be assigned to 3P1 → 1S0 transition of Pb2+ ions. More interestingly, this all-inorganic metal halide compound CsCdCl3:Pb2+ exhibits a long persistent luminescence (LPL) lasting 1050 s, endowed with application potential in the information storage and function of analysis and detection. The LPL mechanism of Pb2+ in CsCdCl3 has been studied by thermoluminescence (TL) measurements and the First-principle calculation, which dominate that the 6p levels of Pb2+ are just below the conduction band by about 0.6 eV. The excited electrons can travel across these 6p levels and the electron traps through the conduction band thermally, delaying the emission temporarily and producing the afterglow finally. Our finding in this work proves the potential of Pb2+ activated phosphors in visible region and provides a unique approach to construct Pb2+ doped LPL phosphors.
期刊介绍:
The purpose of the Journal of Luminescence is to provide a means of communication between scientists in different disciplines who share a common interest in the electronic excited states of molecular, ionic and covalent systems, whether crystalline, amorphous, or liquid.
We invite original papers and reviews on such subjects as: exciton and polariton dynamics, dynamics of localized excited states, energy and charge transport in ordered and disordered systems, radiative and non-radiative recombination, relaxation processes, vibronic interactions in electronic excited states, photochemistry in condensed systems, excited state resonance, double resonance, spin dynamics, selective excitation spectroscopy, hole burning, coherent processes in excited states, (e.g. coherent optical transients, photon echoes, transient gratings), multiphoton processes, optical bistability, photochromism, and new techniques for the study of excited states. This list is not intended to be exhaustive. Papers in the traditional areas of optical spectroscopy (absorption, MCD, luminescence, Raman scattering) are welcome. Papers on applications (phosphors, scintillators, electro- and cathodo-luminescence, radiography, bioimaging, solar energy, energy conversion, etc.) are also welcome if they present results of scientific, rather than only technological interest. However, papers containing purely theoretical results, not related to phenomena in the excited states, as well as papers using luminescence spectroscopy to perform routine analytical chemistry or biochemistry procedures, are outside the scope of the journal. Some exceptions will be possible at the discretion of the editors.