Data-driven collaborative healthcare resource allocation in pandemics

IF 8.3 1区 工程技术 Q1 ECONOMICS
Jiehui Jiang , Dian Sheng , Xiaojing Chen , Qiong Tian , Feng Li , Peng Yang
{"title":"Data-driven collaborative healthcare resource allocation in pandemics","authors":"Jiehui Jiang ,&nbsp;Dian Sheng ,&nbsp;Xiaojing Chen ,&nbsp;Qiong Tian ,&nbsp;Feng Li ,&nbsp;Peng Yang","doi":"10.1016/j.tre.2024.103828","DOIUrl":null,"url":null,"abstract":"<div><div>Severe shortages of healthcare resources are major challenges in pandemics, especially in their early stages. To improve emergency management efficiency, this paper proposes a novel rolling predict-then-optimize framework that includes three interactive modules, i.e., data-driven demand prediction, healthcare resource allocation, and parameter rolling update. Such a framework uses historical data to dynamically update the control parameters of the proposed Net-SEIHRD model, which predicts the healthcare needs of each region by jointly considering government interventions and cross-regional travel behaviors. Based on the forecasted healthcare resource demand in real-time, an optimization model is then formulated to realize coordinated resource allocation across multiple regions by minimizing the total generalized cost. To facilitate model solving, the proposed mixed integer nonlinear programming model is converted into an equivalent mixed integer linear model by using some linearization techniques. Finally, the proposed method is applied to the SARS-CoV-2 emergency response and collaborative allocation of healthcare resources in Shanghai, China. The results show that the proposed prediction model can effectively predict the peak and scale of the spread of the virus. Compared with the traditional LM and SEIHR models, the prediction accuracy of the Net-SEIHRD model is improved by 10.76% and 24.11%, respectively. Moreover, coordinated relief activities across regions, such as patient transfer and drug-sharing can improve the efficiency of pandemic control and save social costs.</div></div>","PeriodicalId":49418,"journal":{"name":"Transportation Research Part E-Logistics and Transportation Review","volume":"192 ","pages":"Article 103828"},"PeriodicalIF":8.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part E-Logistics and Transportation Review","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1366554524004198","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Severe shortages of healthcare resources are major challenges in pandemics, especially in their early stages. To improve emergency management efficiency, this paper proposes a novel rolling predict-then-optimize framework that includes three interactive modules, i.e., data-driven demand prediction, healthcare resource allocation, and parameter rolling update. Such a framework uses historical data to dynamically update the control parameters of the proposed Net-SEIHRD model, which predicts the healthcare needs of each region by jointly considering government interventions and cross-regional travel behaviors. Based on the forecasted healthcare resource demand in real-time, an optimization model is then formulated to realize coordinated resource allocation across multiple regions by minimizing the total generalized cost. To facilitate model solving, the proposed mixed integer nonlinear programming model is converted into an equivalent mixed integer linear model by using some linearization techniques. Finally, the proposed method is applied to the SARS-CoV-2 emergency response and collaborative allocation of healthcare resources in Shanghai, China. The results show that the proposed prediction model can effectively predict the peak and scale of the spread of the virus. Compared with the traditional LM and SEIHR models, the prediction accuracy of the Net-SEIHRD model is improved by 10.76% and 24.11%, respectively. Moreover, coordinated relief activities across regions, such as patient transfer and drug-sharing can improve the efficiency of pandemic control and save social costs.
大流行病中数据驱动的协作式医疗资源分配
医疗资源的严重短缺是大流行病的主要挑战,尤其是在其早期阶段。为提高应急管理效率,本文提出了一种新颖的滚动预测-优化框架,其中包括三个互动模块,即数据驱动的需求预测、医疗资源分配和参数滚动更新。这种框架利用历史数据动态更新所提出的 Net-SEIHRD 模型的控制参数,该模型通过联合考虑政府干预和跨区域旅行行为来预测各区域的医疗需求。在实时预测医疗资源需求的基础上,建立优化模型,通过最小化广义总成本实现跨区域的协调资源分配。为便于模型求解,利用一些线性化技术将所提出的混合整数非线性编程模型转换为等效的混合整数线性模型。最后,将提出的方法应用于中国上海的 SARS-CoV-2 应急响应和医疗资源协同分配。结果表明,所提出的预测模型能有效预测病毒传播的峰值和规模。与传统的 LM 和 SEIHR 模型相比,Net-SEIHRD 模型的预测准确率分别提高了 10.76% 和 24.11%。此外,跨区域的协调救援活动,如病人转运和药物共享,可以提高疫情控制的效率,节约社会成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.20
自引率
16.00%
发文量
285
审稿时长
62 days
期刊介绍: Transportation Research Part E: Logistics and Transportation Review is a reputable journal that publishes high-quality articles covering a wide range of topics in the field of logistics and transportation research. The journal welcomes submissions on various subjects, including transport economics, transport infrastructure and investment appraisal, evaluation of public policies related to transportation, empirical and analytical studies of logistics management practices and performance, logistics and operations models, and logistics and supply chain management. Part E aims to provide informative and well-researched articles that contribute to the understanding and advancement of the field. The content of the journal is complementary to other prestigious journals in transportation research, such as Transportation Research Part A: Policy and Practice, Part B: Methodological, Part C: Emerging Technologies, Part D: Transport and Environment, and Part F: Traffic Psychology and Behaviour. Together, these journals form a comprehensive and cohesive reference for current research in transportation science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信