{"title":"Exploring the nature’s discriminating factors behind the selection of molybdoenzymes and tungstoenzymes depending on the biological environment","authors":"","doi":"10.1016/j.ccr.2024.216290","DOIUrl":null,"url":null,"abstract":"<div><div>Pterin based molybdenum cofactor found in the molybdenum dependent enzymes catalyzes the oxo-transferase and hydroxylase activity. For tungsten, the pterin based tungsten cofactor is known for the similar biological low potential redox activities in anaerobic conditions in thermophilic microorganisms. Nature's selection of tungsten and molybdenum for the different working conditions is rationalized in terms of their relative bioavailabilities, thermodynamic stabilities of their compounds, kinetic inertness and the difference in relativistic effect experienced by these two congeners. The relativistic effect is the most important factor to justify the tungsten <em>vs.</em> molybdenum selectivity in different enzymes. The non-innocent dithiolene based pterin ligand tunes the biological redox activity of the enzymes by stabilising +4, +5 and +6 oxidation states of molybdenum and tungsten. In fact, it acts as a ‘redox buffer’ in their catalytic mechanism. Mechanistic aspects of the enzymatic activity are more investigated for the Mo-dependent enzymes compared to those of W-dependent enzymes. Strong controversies regarding the mechanisms of activity of the enzymes like Mo/W-FDH (formate dehydrogenase), Mo-Cu-CODH (carbon monoxide dehydrogenase), W-AOR (aldehyde oxidoreductase), W-AH (acetylene hydratase), W-BCRs (benzoyl-CoA-reductases), <em>etc.</em>, indicate that this field is still an active area of research.</div></div>","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":null,"pages":null},"PeriodicalIF":20.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coordination Chemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010854524006362","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Pterin based molybdenum cofactor found in the molybdenum dependent enzymes catalyzes the oxo-transferase and hydroxylase activity. For tungsten, the pterin based tungsten cofactor is known for the similar biological low potential redox activities in anaerobic conditions in thermophilic microorganisms. Nature's selection of tungsten and molybdenum for the different working conditions is rationalized in terms of their relative bioavailabilities, thermodynamic stabilities of their compounds, kinetic inertness and the difference in relativistic effect experienced by these two congeners. The relativistic effect is the most important factor to justify the tungsten vs. molybdenum selectivity in different enzymes. The non-innocent dithiolene based pterin ligand tunes the biological redox activity of the enzymes by stabilising +4, +5 and +6 oxidation states of molybdenum and tungsten. In fact, it acts as a ‘redox buffer’ in their catalytic mechanism. Mechanistic aspects of the enzymatic activity are more investigated for the Mo-dependent enzymes compared to those of W-dependent enzymes. Strong controversies regarding the mechanisms of activity of the enzymes like Mo/W-FDH (formate dehydrogenase), Mo-Cu-CODH (carbon monoxide dehydrogenase), W-AOR (aldehyde oxidoreductase), W-AH (acetylene hydratase), W-BCRs (benzoyl-CoA-reductases), etc., indicate that this field is still an active area of research.
期刊介绍:
Coordination Chemistry Reviews offers rapid publication of review articles on current and significant topics in coordination chemistry, encompassing organometallic, supramolecular, theoretical, and bioinorganic chemistry. It also covers catalysis, materials chemistry, and metal-organic frameworks from a coordination chemistry perspective. Reviews summarize recent developments or discuss specific techniques, welcoming contributions from both established and emerging researchers.
The journal releases special issues on timely subjects, including those featuring contributions from specific regions or conferences. Occasional full-length book articles are also featured. Additionally, special volumes cover annual reviews of main group chemistry, transition metal group chemistry, and organometallic chemistry. These comprehensive reviews are vital resources for those engaged in coordination chemistry, further establishing Coordination Chemistry Reviews as a hub for insightful surveys in inorganic and physical inorganic chemistry.