Investigation of comparative entropy in different nanofluids inspired by solar radiations and unsteady effects: Model analysis for permeable channel

IF 1.7 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
Adnan , Azhar Rasheed , Sami Ullah Khan , Muhammad Bilal , Dennis Ling Chuan Ching , Lotfi Ben Said , Ahmed Mir , Lioua Kolsi , Ilyas Khan
{"title":"Investigation of comparative entropy in different nanofluids inspired by solar radiations and unsteady effects: Model analysis for permeable channel","authors":"Adnan ,&nbsp;Azhar Rasheed ,&nbsp;Sami Ullah Khan ,&nbsp;Muhammad Bilal ,&nbsp;Dennis Ling Chuan Ching ,&nbsp;Lotfi Ben Said ,&nbsp;Ahmed Mir ,&nbsp;Lioua Kolsi ,&nbsp;Ilyas Khan","doi":"10.1016/j.jrras.2024.101158","DOIUrl":null,"url":null,"abstract":"<div><div>Entropy analysis in nano as well as conventional fluids is of paramount interest and highly affected by the active physical quantities. The research provides comprehensive comparative entropy performance of multiple nanofluids in the view of model quantities. The physical model considered in the presence of solar radiations, dissipation energy and magnetic field. The multiple fluids squeezed in a channel formed by two horizontal sheets with upper non-stationary surface. The entropy modeling performed using similarity variables for transient flow and governing laws. The numerical approach (RK method coupled with shooting scheme) is used for entropy results which obtained for ternary, hybrid, nano and base fluids. It is found that entropy optimized in ternary nanofluid while hybrid, nano and common fluids caused reduction in it. Dissipation effects (<span><math><mrow><mi>E</mi><mi>c</mi><mo>=</mo><mn>0.1</mn><mo>,</mo><mn>0.3</mn><mo>,</mo><mn>0.5</mn><mo>,</mo><mn>0.7</mn></mrow></math></span>) increases the entropy while significant reduction is observed for <span><math><mrow><msub><mi>Ω</mi><mn>1</mn></msub><mo>=</mo><mn>0.1</mn><mo>,</mo><mn>0.2</mn><mo>,</mo><mn>0.3</mn><mo>,</mo><mn>0.4</mn></mrow></math></span>. The solar radiations in the range of <span><math><mrow><mi>R</mi><mi>d</mi><mo>=</mo><mn>1.0</mn></mrow></math></span> to <span><math><mrow><mi>R</mi><mi>d</mi><mo>=</mo><mn>7.0</mn></mrow></math></span> contributes effectively to improve entropy phenomena in both inward and outward plate movement. Thus, the system can be maintained at low entropy by strengthening the effects of <span><math><mrow><msub><mi>Ω</mi><mn>1</mn></msub></mrow></math></span> and optimum entropy is subject to Eckert number, <span><math><mrow><mi>α</mi><mo>=</mo><mn>0.1</mn><mo>,</mo><mn>0.2</mn><mo>,</mo><mn>0.3</mn><mo>,</mo><mn>0.4</mn></mrow></math></span>, radiations (<span><math><mrow><mi>R</mi><mi>d</mi><mo>=</mo><mn>1.0</mn><mo>,</mo><mn>3.0</mn><mo>,</mo><mn>5.0</mn><mo>,</mo><mn>7.0</mn></mrow></math></span>) for <span><math><mrow><mi>S</mi><mo>&gt;</mo><mn>0.0</mn></mrow></math></span> and <span><math><mrow><mi>S</mi><mo>&lt;</mo><mn>0.0</mn></mrow></math></span>, respectively.</div></div>","PeriodicalId":16920,"journal":{"name":"Journal of Radiation Research and Applied Sciences","volume":"17 4","pages":"Article 101158"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiation Research and Applied Sciences","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S168785072400342X","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Entropy analysis in nano as well as conventional fluids is of paramount interest and highly affected by the active physical quantities. The research provides comprehensive comparative entropy performance of multiple nanofluids in the view of model quantities. The physical model considered in the presence of solar radiations, dissipation energy and magnetic field. The multiple fluids squeezed in a channel formed by two horizontal sheets with upper non-stationary surface. The entropy modeling performed using similarity variables for transient flow and governing laws. The numerical approach (RK method coupled with shooting scheme) is used for entropy results which obtained for ternary, hybrid, nano and base fluids. It is found that entropy optimized in ternary nanofluid while hybrid, nano and common fluids caused reduction in it. Dissipation effects (Ec=0.1,0.3,0.5,0.7) increases the entropy while significant reduction is observed for Ω1=0.1,0.2,0.3,0.4. The solar radiations in the range of Rd=1.0 to Rd=7.0 contributes effectively to improve entropy phenomena in both inward and outward plate movement. Thus, the system can be maintained at low entropy by strengthening the effects of Ω1 and optimum entropy is subject to Eckert number, α=0.1,0.2,0.3,0.4, radiations (Rd=1.0,3.0,5.0,7.0) for S>0.0 and S<0.0, respectively.
受太阳辐射和不稳定效应启发的不同纳米流体中的比较熵研究:透水通道的模型分析
纳米流体和传统流体中的熵分析都是最重要的问题,并且受有效物理量的影响很大。本研究从模型量的角度对多种纳米流体的熵性能进行了综合比较。物理模型考虑了太阳辐射、耗散能量和磁场的存在。多种流体挤压在由两片上表面非稳态的水平面形成的通道中。使用瞬态流的相似变量和支配规律进行熵建模。数值方法(RK 方法与射击方案相结合)用于计算三元流体、混合流体、纳米流体和基本流体的熵值结果。结果发现,三元纳米流体的熵值最大,而混合流体、纳米流体和普通流体的熵值较小。耗散效应(Ec=0.1,0.3,0.5,0.7)增加了熵,而在Ω1=0.1,0.2,0.3,0.4 时熵显著减少。在 Rd=1.0 到 Rd=7.0 范围内的太阳辐射有效地改善了板块向内和向外运动的熵现象。因此,在 S>0.0 和 S<0.0 条件下,通过加强 Ω1 的作用,系统可以维持在低熵状态,而在埃克特数 α=0.1,0.2,0.3,0.4 辐射条件下(Rd=1.0,3.0,5.0,7.0),熵值分别为 S>0.0 和 S<0.0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
5.90%
发文量
130
审稿时长
16 weeks
期刊介绍: Journal of Radiation Research and Applied Sciences provides a high quality medium for the publication of substantial, original and scientific and technological papers on the development and applications of nuclear, radiation and isotopes in biology, medicine, drugs, biochemistry, microbiology, agriculture, entomology, food technology, chemistry, physics, solid states, engineering, environmental and applied sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信