{"title":"PAM material that instantly gives ordinary fabrics excellent flame retardant and thermal insulation properties for fire rescue","authors":"Bibo Zhou , Xiaoming Zhao , Yuanjun Liu","doi":"10.1016/j.mtnano.2024.100535","DOIUrl":null,"url":null,"abstract":"<div><div>To effectively reduce the damage caused by flame burns or heat transfer to the human body during fire, we used PAM aqueous solution as the matrix, XG as the thickener, HPMC as the water-retaining agent to form the basic material system, and added different functional particles (APP, PTW, HCB) to prepare a fire-proof and heat-insulating PAM flame-retardant material for fire emergency rescue. Ordinary cotton fabrics were impregnated into PAM flame-retardant materials using a simple impregnation process. After the impregnation, the test was performed in a non-dropping state (simulating the thermal protection effect of PAM flame retardant materials directly acting on the outside of the human body at the fire scene). The results show that the PAM flame retardant material prepared by adding 4 wt% HCB has the best comprehensive performance. TPP test shows that spraying PAM flame retardant material on the outside of the fabric can instantly give the fabric a higher thermal protection performance. Under the total heat flux of 84 kW/m<sup>2</sup>, the thermal performance protection value of the fabric is 2641.8 kW s/m<sup>2</sup>, and the second-degree burn time can reach 31.45 s. PAM flame retardant material does not damage the fabric. After soaping, the air permeability of the fabric decreases slightly, the moisture permeability and wettability are improved, and the breaking strength is almost unchanged. The CCT test showed that the thermal radiation flux was 50 kW/m<sup>2</sup>, the PHRR value of PAM flame retardant material was 10.64552 kW/m<sup>2</sup>, the THR was 6.9 MJ/m<sup>2</sup>, and the flame retardant performance was excellent. The PAM flame retardant material prepared in this project can be applied to the fire scene and directly sprayed on the outside of the clothing of rescuers and recipients, giving the fabric a better thermal protection effect. It can also be used to extinguish fires in the external environment. This material offers a novel solution for enhancing fire rescuers' and victims' safety protection levels.</div></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"28 ","pages":"Article 100535"},"PeriodicalIF":8.2000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Nano","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588842024000853","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
To effectively reduce the damage caused by flame burns or heat transfer to the human body during fire, we used PAM aqueous solution as the matrix, XG as the thickener, HPMC as the water-retaining agent to form the basic material system, and added different functional particles (APP, PTW, HCB) to prepare a fire-proof and heat-insulating PAM flame-retardant material for fire emergency rescue. Ordinary cotton fabrics were impregnated into PAM flame-retardant materials using a simple impregnation process. After the impregnation, the test was performed in a non-dropping state (simulating the thermal protection effect of PAM flame retardant materials directly acting on the outside of the human body at the fire scene). The results show that the PAM flame retardant material prepared by adding 4 wt% HCB has the best comprehensive performance. TPP test shows that spraying PAM flame retardant material on the outside of the fabric can instantly give the fabric a higher thermal protection performance. Under the total heat flux of 84 kW/m2, the thermal performance protection value of the fabric is 2641.8 kW s/m2, and the second-degree burn time can reach 31.45 s. PAM flame retardant material does not damage the fabric. After soaping, the air permeability of the fabric decreases slightly, the moisture permeability and wettability are improved, and the breaking strength is almost unchanged. The CCT test showed that the thermal radiation flux was 50 kW/m2, the PHRR value of PAM flame retardant material was 10.64552 kW/m2, the THR was 6.9 MJ/m2, and the flame retardant performance was excellent. The PAM flame retardant material prepared in this project can be applied to the fire scene and directly sprayed on the outside of the clothing of rescuers and recipients, giving the fabric a better thermal protection effect. It can also be used to extinguish fires in the external environment. This material offers a novel solution for enhancing fire rescuers' and victims' safety protection levels.
期刊介绍:
Materials Today Nano is a multidisciplinary journal dedicated to nanoscience and nanotechnology. The journal aims to showcase the latest advances in nanoscience and provide a platform for discussing new concepts and applications. With rigorous peer review, rapid decisions, and high visibility, Materials Today Nano offers authors the opportunity to publish comprehensive articles, short communications, and reviews on a wide range of topics in nanoscience. The editors welcome comprehensive articles, short communications and reviews on topics including but not limited to:
Nanoscale synthesis and assembly
Nanoscale characterization
Nanoscale fabrication
Nanoelectronics and molecular electronics
Nanomedicine
Nanomechanics
Nanosensors
Nanophotonics
Nanocomposites