Xuechun Wang , Xiqing Bian , Pingping Dong , Li Zhang , Lili Zhang , Chengfeng Gao , Haoyuan Zeng , Na Li , Jian-Lin Wu
{"title":"Food processing drives the toxic lectin reduction and bioactive peptide enhancement in Pinellia ternata","authors":"Xuechun Wang , Xiqing Bian , Pingping Dong , Li Zhang , Lili Zhang , Chengfeng Gao , Haoyuan Zeng , Na Li , Jian-Lin Wu","doi":"10.1016/j.crfs.2024.100895","DOIUrl":null,"url":null,"abstract":"<div><div>Processing can change the properties and flavors of food. Many plants in the Araceae family can be used as food or medicine, but their raw materials are usually toxic, such as <em>Pinellia ternata</em> tuber (PTT). After processing (processed PTT, PPTT), its toxicity is reduced. However, the mechanism remains unclear. In this study, a novel approach integrating liquid chromatography-mass spectrometry, feature-based molecular networking (FBMN), <em>de novo</em> sequencing, and protein database searching was applied to rapidly discover and characterize peptides in PPTT. Potential antihypertensive peptides were screened using <em>in silico</em> methods, angiotensin I-converting enzyme (ACE) inhibitory assay, and molecular docking analysis. A significant decrease was observed in toxic lectins after processing. Meanwhile, a total of 1954 mass spectral nodes were discovered in PPTT, of which 130 were annotated as peptides by FBMN. These peptides, ranging from 2 to 21 amino acids, were rapidly identified using PEAKS. Notably, 98 peptides were derived from lectins, most of which increased after processing. Approximately 30% of identified peptides were screened for potential high antihypertensive activity <em>in silico</em>. Five peptides exhibited inhibitory effects on ACE, with two showing IC<sub>50</sub> values of 131 and 185 μM. Dynamic profiling indicated that 7–9 days of processing is optimal for reducing toxicity and enhancing efficacy. More importantly, these peptides were also found in commercial PPTT, confirming their bioactivity contributions. These findings provide insights into the mechanism by which food processing drives the toxic lectin reduction and bioactive peptide enhancement in PTT, providing a novel approach to rapidly discover bioactive peptides, which can be extended to other foods in Araceae family.</div></div>","PeriodicalId":10939,"journal":{"name":"Current Research in Food Science","volume":"9 ","pages":"Article 100895"},"PeriodicalIF":6.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Food Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665927124002211","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Processing can change the properties and flavors of food. Many plants in the Araceae family can be used as food or medicine, but their raw materials are usually toxic, such as Pinellia ternata tuber (PTT). After processing (processed PTT, PPTT), its toxicity is reduced. However, the mechanism remains unclear. In this study, a novel approach integrating liquid chromatography-mass spectrometry, feature-based molecular networking (FBMN), de novo sequencing, and protein database searching was applied to rapidly discover and characterize peptides in PPTT. Potential antihypertensive peptides were screened using in silico methods, angiotensin I-converting enzyme (ACE) inhibitory assay, and molecular docking analysis. A significant decrease was observed in toxic lectins after processing. Meanwhile, a total of 1954 mass spectral nodes were discovered in PPTT, of which 130 were annotated as peptides by FBMN. These peptides, ranging from 2 to 21 amino acids, were rapidly identified using PEAKS. Notably, 98 peptides were derived from lectins, most of which increased after processing. Approximately 30% of identified peptides were screened for potential high antihypertensive activity in silico. Five peptides exhibited inhibitory effects on ACE, with two showing IC50 values of 131 and 185 μM. Dynamic profiling indicated that 7–9 days of processing is optimal for reducing toxicity and enhancing efficacy. More importantly, these peptides were also found in commercial PPTT, confirming their bioactivity contributions. These findings provide insights into the mechanism by which food processing drives the toxic lectin reduction and bioactive peptide enhancement in PTT, providing a novel approach to rapidly discover bioactive peptides, which can be extended to other foods in Araceae family.
期刊介绍:
Current Research in Food Science is an international peer-reviewed journal dedicated to advancing the breadth of knowledge in the field of food science. It serves as a platform for publishing original research articles and short communications that encompass a wide array of topics, including food chemistry, physics, microbiology, nutrition, nutraceuticals, process and package engineering, materials science, food sustainability, and food security. By covering these diverse areas, the journal aims to provide a comprehensive source of the latest scientific findings and technological advancements that are shaping the future of the food industry. The journal's scope is designed to address the multidisciplinary nature of food science, reflecting its commitment to promoting innovation and ensuring the safety and quality of the food supply.