Yaoye Wang , Rui Zhong , Qingshan Wang , Liming Chen , Bin Qin
{"title":"Uncertainty sensitivity analysis for vibration properties of composite doubly-curved shallow shells using Kriging method","authors":"Yaoye Wang , Rui Zhong , Qingshan Wang , Liming Chen , Bin Qin","doi":"10.1016/j.tws.2024.112600","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a Kriging based global sensitivity analysis (GSA) method for the frequency response of displacements of composite doubly-curved shallow shells. A unified solution is utilized to develop the dynamic vibration formulation using the First-order Shear Deformation Theory (FSDT) and the Rayleigh–Ritz method. Kriging surrogate model is employed to substitute the frequency response function (FRF) of displacements. Ten parameters including materials and geometrical dimension are considered as input uncertain variables. A variance-based GSA method for dynamic model is employed to quantify the influence of each uncertain parameter. In addition, to avoid the computational burden of Monte Carlo simulation method (MCS), the presented sensitivity indices are computed analytically based on the Kriging mode, which further improves computational efficiency. Based on the convergence studies and comparison with traditional methods, the accuracy and efficiency of the present method are validated. The results shows that the frequency response of displacements exhibits greater sensitivity to changes in width, and thickness is more influential than others in the example from this article. Finally, the presented numerical results demonstrate vibration characteristics of different types of shells and observation points, which can also serve as a reference for further study on uncertainty-propagation analysis.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"205 ","pages":"Article 112600"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263823124010401","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a Kriging based global sensitivity analysis (GSA) method for the frequency response of displacements of composite doubly-curved shallow shells. A unified solution is utilized to develop the dynamic vibration formulation using the First-order Shear Deformation Theory (FSDT) and the Rayleigh–Ritz method. Kriging surrogate model is employed to substitute the frequency response function (FRF) of displacements. Ten parameters including materials and geometrical dimension are considered as input uncertain variables. A variance-based GSA method for dynamic model is employed to quantify the influence of each uncertain parameter. In addition, to avoid the computational burden of Monte Carlo simulation method (MCS), the presented sensitivity indices are computed analytically based on the Kriging mode, which further improves computational efficiency. Based on the convergence studies and comparison with traditional methods, the accuracy and efficiency of the present method are validated. The results shows that the frequency response of displacements exhibits greater sensitivity to changes in width, and thickness is more influential than others in the example from this article. Finally, the presented numerical results demonstrate vibration characteristics of different types of shells and observation points, which can also serve as a reference for further study on uncertainty-propagation analysis.
期刊介绍:
Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses.
Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering.
The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.