V2O5-MnO2 nanocomposites as an efficient electrode material for high-performance aqueous supercapacitors

IF 7.1 3区 材料科学 Q1 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Tapan K. Pani , Sadananda Muduli , Kiran Kumar Garlapati , Surendra Kumar Martha
{"title":"V2O5-MnO2 nanocomposites as an efficient electrode material for high-performance aqueous supercapacitors","authors":"Tapan K. Pani ,&nbsp;Sadananda Muduli ,&nbsp;Kiran Kumar Garlapati ,&nbsp;Surendra Kumar Martha","doi":"10.1016/j.mtsust.2024.101010","DOIUrl":null,"url":null,"abstract":"<div><div>Redox-active supercapacitors are very interesting due to their high energy density (&gt;25 Wh kg<sup>−1</sup> at device level) and redox charge storage mechanism. In this work, V<sub>2</sub>O<sub>5</sub>-MnO<sub>2</sub> nanocomposites are synthesized by a scalable hydrothermal approach. MnO<sub>2</sub> in V<sub>2</sub>O<sub>5</sub> provides better structural stability with reasonable electrochemical performance, in which V<sub>2</sub>O<sub>5</sub> enhances the cyclic stability and rate capabilities. The V<sub>2</sub>O<sub>5</sub>-MnO<sub>2</sub> -based electrodes deliver a specific capacitance of 266 F g<sup>−1</sup> at 0.5 A g<sup>−1</sup> and are stable up to 6500 cycles with 97 % capacitance retention at 5 A g<sup>−1</sup>. The kinetic study depicts that composite electrodes have a 64 % diffusive and 36 % capacitive charge storage contribution to the overall charge storage at 1 mV s<sup>−1</sup>. In symmetric full cells, the composite materials show a wide active potential window of 2.5 V and retain 83 % capacitance after 10000 continuous GCD cycles at an applied current density of 2 A g<sup>−1</sup>. The promising charge storage performance is due to a suitable conducting matrix and the effective coating of MnO<sub>2</sub> nanoparticles over the unique V<sub>2</sub>O<sub>5</sub> niddle shape (two-dimensional) micro-rods.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"28 ","pages":"Article 101010"},"PeriodicalIF":7.1000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Sustainability","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589234724003464","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Redox-active supercapacitors are very interesting due to their high energy density (>25 Wh kg−1 at device level) and redox charge storage mechanism. In this work, V2O5-MnO2 nanocomposites are synthesized by a scalable hydrothermal approach. MnO2 in V2O5 provides better structural stability with reasonable electrochemical performance, in which V2O5 enhances the cyclic stability and rate capabilities. The V2O5-MnO2 -based electrodes deliver a specific capacitance of 266 F g−1 at 0.5 A g−1 and are stable up to 6500 cycles with 97 % capacitance retention at 5 A g−1. The kinetic study depicts that composite electrodes have a 64 % diffusive and 36 % capacitive charge storage contribution to the overall charge storage at 1 mV s−1. In symmetric full cells, the composite materials show a wide active potential window of 2.5 V and retain 83 % capacitance after 10000 continuous GCD cycles at an applied current density of 2 A g−1. The promising charge storage performance is due to a suitable conducting matrix and the effective coating of MnO2 nanoparticles over the unique V2O5 niddle shape (two-dimensional) micro-rods.

Abstract Image

V2O5-MnO2 纳米复合材料作为高性能水性超级电容器的高效电极材料
氧化还原活性超级电容器因其高能量密度(器件级为 25 Wh kg-1)和氧化还原电荷存储机制而备受关注。本研究采用可扩展的水热法合成了 V2O5-MnO2 纳米复合材料。V2O5 中的 MnO2 具有更好的结构稳定性和合理的电化学性能,其中 V2O5 增强了循环稳定性和速率能力。基于 V2O5-MnO2 的电极在 0.5 A g-1 电流条件下的比电容为 266 F g-1,在 5 A g-1 电流条件下的比电容保持率为 97%,可稳定循环 6500 次。动力学研究表明,在 1 mV s-1 时,复合电极对整体电荷存储的贡献率为 64% 扩散电荷存储和 36% 容性电荷存储。在对称全电池中,复合材料显示出 2.5 V 的宽活动电位窗口,在 2 A g-1 的应用电流密度下,经过 10000 次连续 GCD 循环后,电容保持率为 83%。良好的电荷存储性能归功于合适的导电基质以及在独特的 V2O5 中型(二维)微棒上有效地包覆 MnO2 纳米粒子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
6.40%
发文量
174
审稿时长
32 days
期刊介绍: Materials Today Sustainability is a multi-disciplinary journal covering all aspects of sustainability through materials science. With a rapidly increasing population with growing demands, materials science has emerged as a critical discipline toward protecting of the environment and ensuring the long term survival of future generations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信