Bilayer one-dimensional Convection–Diffusion–Reaction-Source problem: Analytical and numerical solution

IF 4.9 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Guillermo Federico Umbricht , Diana Rubio , Domingo Alberto Tarzia
{"title":"Bilayer one-dimensional Convection–Diffusion–Reaction-Source problem: Analytical and numerical solution","authors":"Guillermo Federico Umbricht ,&nbsp;Diana Rubio ,&nbsp;Domingo Alberto Tarzia","doi":"10.1016/j.ijthermalsci.2024.109471","DOIUrl":null,"url":null,"abstract":"<div><div>This article presents a theoretical analysis of a one-dimensional heat transfer problem in two layers involving diffusion, advection, internal heat generation or loss linearly dependent on temperature in each layer, and heat generation due to external sources. Additionally, the thermal resistance at the interface between the materials is considered. The situation of interest is modeled mathematically, explicit analytical solutions are found using Fourier techniques, and a convergent finite difference scheme is formulated to simulate specific cases. The solution is consistent with previous results. A numerical example is included that shows coherence between the obtained results and the physics of the problem. The conclusions drawn in this work expand the theoretical understanding of two-layer heat transfer and may also contribute to improving the thermal design of multilayer engineering systems.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"208 ","pages":"Article 109471"},"PeriodicalIF":4.9000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072924005933","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a theoretical analysis of a one-dimensional heat transfer problem in two layers involving diffusion, advection, internal heat generation or loss linearly dependent on temperature in each layer, and heat generation due to external sources. Additionally, the thermal resistance at the interface between the materials is considered. The situation of interest is modeled mathematically, explicit analytical solutions are found using Fourier techniques, and a convergent finite difference scheme is formulated to simulate specific cases. The solution is consistent with previous results. A numerical example is included that shows coherence between the obtained results and the physics of the problem. The conclusions drawn in this work expand the theoretical understanding of two-layer heat transfer and may also contribute to improving the thermal design of multilayer engineering systems.
双层一维对流-扩散-反作用-源问题:分析与数值求解
本文对两层中的一维传热问题进行了理论分析,涉及每层中的扩散、平流、与温度线性相关的内部热量产生或损失,以及外部热源产生的热量。此外,还考虑了材料界面处的热阻。对相关情况进行数学建模,利用傅立叶技术找到明确的解析解,并制定收敛有限差分方案来模拟特定情况。求解结果与之前的结果一致。其中的一个数值示例显示了所获得的结果与问题的物理原理之间的一致性。本研究得出的结论拓展了对双层传热的理论理解,也有助于改进多层工程系统的热设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Thermal Sciences
International Journal of Thermal Sciences 工程技术-工程:机械
CiteScore
8.10
自引率
11.10%
发文量
531
审稿时长
55 days
期刊介绍: The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review. The fundamental subjects considered within the scope of the journal are: * Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow * Forced, natural or mixed convection in reactive or non-reactive media * Single or multi–phase fluid flow with or without phase change * Near–and far–field radiative heat transfer * Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...) * Multiscale modelling The applied research topics include: * Heat exchangers, heat pipes, cooling processes * Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries) * Nano–and micro–technology for energy, space, biosystems and devices * Heat transport analysis in advanced systems * Impact of energy–related processes on environment, and emerging energy systems The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信