Comparative performance analysis of microchannel heat sink with different geometric structures

IF 4.9 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Zhixuan Liang , Haiping Wen , Qiming Lv , Wen Su , Changhong Wang
{"title":"Comparative performance analysis of microchannel heat sink with different geometric structures","authors":"Zhixuan Liang ,&nbsp;Haiping Wen ,&nbsp;Qiming Lv ,&nbsp;Wen Su ,&nbsp;Changhong Wang","doi":"10.1016/j.ijthermalsci.2024.109495","DOIUrl":null,"url":null,"abstract":"<div><div>This paper analyses the characteristics of temperature, velocity and pressure loss of various channel configurations with identical Reynolds Number Re. A comparative analysis is conducted to assess substrate temperature and convection heat dissipation area. Furthermore, the optimal composite microchannel heat sink design is identified leveraging entropy generation theory and a comprehensive performance evaluation. Simulation results reveal that the pressure loss of microchannel with rectangular cross-sectional cavities (MC-RCSC) is the lowest whereas microchannel with ribs and secondary channels (MC-RSOC) experiences the highest. The flow rate of MC-RSOC is uniform and better mixed with the aid of the backflow phenomenon. In terms of average outlet temperature, in descending order, the microchannels are ranked as follows: MC-RCSC &gt; microchannel with rectangular grooves and side wall ribs (MC-RGSW) &gt; microchannel with rectangular grooves and alternating ribs (MC-RGA) &gt; microchannel with rectangular grooves (MC-RG) &gt; MC-RSOC. Regarding the performance factor, <span><math><mrow><mi>P</mi><mi>f</mi></mrow></math></span>, of MC-RSOC, MC-RCSC and MC-RG are all greater than 1, while the <span><math><mrow><mi>P</mi><mi>f</mi></mrow></math></span> of MC-RGA and MC-RGSW are less than 1 at low Re. The <span><math><mrow><mi>P</mi><mi>f</mi></mrow></math></span> of MC-RSOC is the highest. Flow rate is found to have a marginal impact on the temperature drop. <span><math><mrow><msub><mi>S</mi><mrow><mi>g</mi><mi>e</mi><mi>n</mi><mo>,</mo><mo>Δ</mo><mi>P</mi></mrow></msub></mrow></math></span> is an order of magnitude smaller than <span><math><mrow><msub><mi>S</mi><mrow><mi>g</mi><mi>e</mi><mi>n</mi><mo>,</mo><mo>Δ</mo><mi>T</mi></mrow></msub></mrow></math></span>, <span><math><mrow><msub><mi>S</mi><mrow><mi>g</mi><mi>e</mi><mi>n</mi></mrow></msub></mrow></math></span> of MC-RSOC is the smallest. The comprehensive comparison of entropy generation and performance shows that MC-RSOC is the best composite structure.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"208 ","pages":"Article 109495"},"PeriodicalIF":4.9000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072924006173","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper analyses the characteristics of temperature, velocity and pressure loss of various channel configurations with identical Reynolds Number Re. A comparative analysis is conducted to assess substrate temperature and convection heat dissipation area. Furthermore, the optimal composite microchannel heat sink design is identified leveraging entropy generation theory and a comprehensive performance evaluation. Simulation results reveal that the pressure loss of microchannel with rectangular cross-sectional cavities (MC-RCSC) is the lowest whereas microchannel with ribs and secondary channels (MC-RSOC) experiences the highest. The flow rate of MC-RSOC is uniform and better mixed with the aid of the backflow phenomenon. In terms of average outlet temperature, in descending order, the microchannels are ranked as follows: MC-RCSC > microchannel with rectangular grooves and side wall ribs (MC-RGSW) > microchannel with rectangular grooves and alternating ribs (MC-RGA) > microchannel with rectangular grooves (MC-RG) > MC-RSOC. Regarding the performance factor, Pf, of MC-RSOC, MC-RCSC and MC-RG are all greater than 1, while the Pf of MC-RGA and MC-RGSW are less than 1 at low Re. The Pf of MC-RSOC is the highest. Flow rate is found to have a marginal impact on the temperature drop. Sgen,ΔP is an order of magnitude smaller than Sgen,ΔT, Sgen of MC-RSOC is the smallest. The comprehensive comparison of entropy generation and performance shows that MC-RSOC is the best composite structure.
不同几何结构微通道散热器的性能对比分析
本文分析了雷诺数 Re 相同的各种通道配置的温度、速度和压力损失特性。通过对比分析,评估了基底温度和对流散热面积。此外,利用熵生成理论和综合性能评估,确定了最佳复合微通道散热器设计。仿真结果表明,带矩形截面空腔的微通道(MC-RCSC)的压力损失最小,而带肋骨和次级通道的微通道(MC-RSOC)的压力损失最大。借助回流现象,MC-RSOC 的流速均匀,混合效果更好。就平均出口温度而言,微通道的降序排列如下:MC-RCSC;带矩形槽和侧壁肋条的微通道(MC-RGSW);带矩形槽和交替肋条的微通道(MC-RGA);带矩形槽的微通道(MC-RG);MC-RSOC。在低 Re 条件下,MC-RSOC、MC-RCSC 和 MC-RG 的性能系数 Pf 均大于 1,而 MC-RGA 和 MC-RGSW 的 Pf 均小于 1。MC-RSOC 的 Pf 最高。流量对温降的影响微乎其微。Sgen,ΔP 比 Sgen,ΔT 小一个数量级,MC-RSOC 的 Sgen 最小。熵产生和性能的综合比较表明,MC-RSOC 是最佳的复合结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Thermal Sciences
International Journal of Thermal Sciences 工程技术-工程:机械
CiteScore
8.10
自引率
11.10%
发文量
531
审稿时长
55 days
期刊介绍: The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review. The fundamental subjects considered within the scope of the journal are: * Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow * Forced, natural or mixed convection in reactive or non-reactive media * Single or multi–phase fluid flow with or without phase change * Near–and far–field radiative heat transfer * Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...) * Multiscale modelling The applied research topics include: * Heat exchangers, heat pipes, cooling processes * Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries) * Nano–and micro–technology for energy, space, biosystems and devices * Heat transport analysis in advanced systems * Impact of energy–related processes on environment, and emerging energy systems The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信