Marina Zingaro , Giovanni Scicchitano , Alberto Refice , Antonella Marsico , Alok Kushabaha , Mario Elia , Raffaele Lafortezza , Domenico Capolongo
{"title":"Assessing the impact of vegetation cover changes and post-fire effects through an enhanced sediment flow connectivity index (SfCI)","authors":"Marina Zingaro , Giovanni Scicchitano , Alberto Refice , Antonella Marsico , Alok Kushabaha , Mario Elia , Raffaele Lafortezza , Domenico Capolongo","doi":"10.1016/j.catena.2024.108474","DOIUrl":null,"url":null,"abstract":"<div><div>Land cover plays a fundamental role in surface dynamics that involve sediment connectivity. Land cover types can physically mitigate, prevent or increase sediment production and mobility on the surface. Further, changes in land cover, particularly in vegetation classes, can directly affect these processes, especially if they occur over short time periods or even more rapidly after extreme events such as fires. This study analyses vegetation cover changes in the Lama Camaggi catchment (southern Italy) in relation to its sediment connectivity pattern, described by Sediment flow Connectivity Index (SfCI). The Normalized difference vegetation index (NDVI), derived from satellite data, is utilized to detect vegetation cover changes over 8-year interval and following fire events. The main objective is to evaluate how the NDVI improves the flexibility of SfCI in defining surface dynamics on both spatial and temporal scales. The findings indicate that (1) NDVI changes identify vegetation cover changes in a short period in many areas of the catchment, potentially affecting sediment connectivity, and (2) the implementation of NDVI in the SfCI helps detect post-fire effects on sediment mobility and connectivity. Integrating NDVI enhances the SfCI algorithm providing a more dynamic description of sediment patterns.</div></div>","PeriodicalId":9801,"journal":{"name":"Catena","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catena","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0341816224006714","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Land cover plays a fundamental role in surface dynamics that involve sediment connectivity. Land cover types can physically mitigate, prevent or increase sediment production and mobility on the surface. Further, changes in land cover, particularly in vegetation classes, can directly affect these processes, especially if they occur over short time periods or even more rapidly after extreme events such as fires. This study analyses vegetation cover changes in the Lama Camaggi catchment (southern Italy) in relation to its sediment connectivity pattern, described by Sediment flow Connectivity Index (SfCI). The Normalized difference vegetation index (NDVI), derived from satellite data, is utilized to detect vegetation cover changes over 8-year interval and following fire events. The main objective is to evaluate how the NDVI improves the flexibility of SfCI in defining surface dynamics on both spatial and temporal scales. The findings indicate that (1) NDVI changes identify vegetation cover changes in a short period in many areas of the catchment, potentially affecting sediment connectivity, and (2) the implementation of NDVI in the SfCI helps detect post-fire effects on sediment mobility and connectivity. Integrating NDVI enhances the SfCI algorithm providing a more dynamic description of sediment patterns.
期刊介绍:
Catena publishes papers describing original field and laboratory investigations and reviews on geoecology and landscape evolution with emphasis on interdisciplinary aspects of soil science, hydrology and geomorphology. It aims to disseminate new knowledge and foster better understanding of the physical environment, of evolutionary sequences that have resulted in past and current landscapes, and of the natural processes that are likely to determine the fate of our terrestrial environment.
Papers within any one of the above topics are welcome provided they are of sufficiently wide interest and relevance.