Recent advances and perspectives on Sb2S3 thin-film solar cells

IF 7.1 3区 材料科学 Q1 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Shiyao Gu , Saad Ullah , Firoz Khan , Xiaoxia Wang , Ping Liu , Shi-e Yang , Yongsheng Chen
{"title":"Recent advances and perspectives on Sb2S3 thin-film solar cells","authors":"Shiyao Gu ,&nbsp;Saad Ullah ,&nbsp;Firoz Khan ,&nbsp;Xiaoxia Wang ,&nbsp;Ping Liu ,&nbsp;Shi-e Yang ,&nbsp;Yongsheng Chen","doi":"10.1016/j.mtsust.2024.101019","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, antimony-based chalcogenides have gained attention as exciting prospects for next-generation thin-film photovoltaics. Binary Sb<sub>2</sub>S<sub>3</sub> thin films are up-and-coming for optoelectronic applications due to their remarkable stability, simple composition, suitable charge transport, and facile and cost-effective synthesis. Contrary to other well-established chalcogenide-based solar cells, the power conversion efficiency (PCE) of Sb<sub>2</sub>S<sub>3</sub> solar cells is significantly lower. In light of this, it is imperative to perform a thorough summary and exploration of the performance of Sb<sub>2</sub>S<sub>3</sub> thin-film solar cells, identify the primary issues, and develop viable solutions to enhance their PCE. This review thoroughly analyzed Sb<sub>2</sub>S<sub>3</sub> photovoltaic devices, revealing their significant advances and challenges in the last decade. This review thoroughly analyzes and discusses the most recent developments in Sb<sub>2</sub>S<sub>3</sub> solar cells, including their properties, fabrication processes, and engineering strategies established to improve efficiency. In conclusion, the outlook and prospects for the further advancement of Sb<sub>2</sub>S<sub>3</sub> solar cells are discussed.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"28 ","pages":"Article 101019"},"PeriodicalIF":7.1000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Sustainability","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589234724003555","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, antimony-based chalcogenides have gained attention as exciting prospects for next-generation thin-film photovoltaics. Binary Sb2S3 thin films are up-and-coming for optoelectronic applications due to their remarkable stability, simple composition, suitable charge transport, and facile and cost-effective synthesis. Contrary to other well-established chalcogenide-based solar cells, the power conversion efficiency (PCE) of Sb2S3 solar cells is significantly lower. In light of this, it is imperative to perform a thorough summary and exploration of the performance of Sb2S3 thin-film solar cells, identify the primary issues, and develop viable solutions to enhance their PCE. This review thoroughly analyzed Sb2S3 photovoltaic devices, revealing their significant advances and challenges in the last decade. This review thoroughly analyzes and discusses the most recent developments in Sb2S3 solar cells, including their properties, fabrication processes, and engineering strategies established to improve efficiency. In conclusion, the outlook and prospects for the further advancement of Sb2S3 solar cells are discussed.

Abstract Image

Sb2S3 薄膜太阳能电池的最新进展与展望
近年来,锑基铬化物作为下一代薄膜光伏技术的前景令人振奋,备受关注。二元 Sb2S3 薄膜因其卓越的稳定性、简单的组成、合适的电荷传输以及简便而经济的合成方法,成为光电应用领域的新兴材料。与其他成熟的基于卤化镓的太阳能电池相比,Sb2S3 太阳能电池的功率转换效率(PCE)明显较低。有鉴于此,必须对 Sb2S3 薄膜太阳能电池的性能进行全面总结和探索,找出主要问题,并制定可行的解决方案来提高其 PCE。本综述全面分析了 Sb2S3 光伏设备,揭示了其在过去十年中取得的重大进展和面临的挑战。本综述全面分析和讨论了 Sb2S3 太阳能电池的最新发展,包括其特性、制造工艺以及为提高效率而制定的工程策略。最后,还讨论了进一步发展 Sb2S3 太阳能电池的前景和展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
6.40%
发文量
174
审稿时长
32 days
期刊介绍: Materials Today Sustainability is a multi-disciplinary journal covering all aspects of sustainability through materials science. With a rapidly increasing population with growing demands, materials science has emerged as a critical discipline toward protecting of the environment and ensuring the long term survival of future generations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信