{"title":"Investigating agricultural drought in Northern Italy through explainable Machine Learning: Insights from the 2022 drought","authors":"Chenli Xue , Aurora Ghirardelli , Jianping Chen , Paolo Tarolli","doi":"10.1016/j.compag.2024.109572","DOIUrl":null,"url":null,"abstract":"<div><div>Agricultural drought is a complex natural hazard involving multiple variables and has garnered increasing attention for its severe threat to food security worldwide. In the context of climate change and the increased occurrence of drought events, it is crucial to monitor drought drivers and progression to plan the subsequent efforts in drought prevention, adaptation, and migration. However, previous studies on agricultural drought often focused on precipitation or evapotranspiration, overlooking other potential drivers related to crop drought stress. Additionally, macro-level analyses of drought-driving mechanisms struggle to reveal the underlying contexts of varying drought intensities. Northern Italy is one of the most important agricultural regions in Europe and is also a hotspot affected by extreme climate events in the world. In the summer of 2022, an extreme drought struck Europe once again, causing significant damage to the agricultural regions of Northern Italy. However, no studies to date have revealed the potential impacts and extent of extreme drought on this crucial agricultural area at a regional scale. Therefore, a comprehensive understanding of agricultural drought still requires further clarification and differentiated driver analysis. This study proposed a novel framework to comprehensively monitor agricultural drought with ensemble machine learning by constructing an integrated agriculture drought index (IADI) with remote sensing-related data including meteorology, soil, geomorphology, and vegetation conditions. Additionally, the Shapley Additive Explanation (SHAP) explainable model was applied to reveal the driving mechanism behind the drought event that occurred in northern Italy in the summer of 2022. Results indicated that the proposed explainable ensemble machine learning model with multi-source remote sensing products could effectively depict the evolution of agricultural drought with spatially continuous maps on an 8-day scales. The SHAP analysis demonstrated that the extreme and severe agricultural drought in the summer of 2022 was closely related to meteorological indicators especially precipitation and land surface temperature, which contributed 68.88% to the drought. Moreover, the new findings also highlighted that soil properties affected the agricultural drought with a contribution of 28.3%. Specifically, in the case of moderate and slight drought conditions, higher clay and soil organic carbon (SOC) content contribute to mitigating drought effects, while sandy and silty soils have the opposite effect, and the contributions from soil texture and SOC are more significant than precipitation and land surface temperature. The proposed research framework could effectively contribute to improving the methodology in agricultural drought research, potentially bringing more instructive insights for drought prevention and mitigation.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":null,"pages":null},"PeriodicalIF":7.7000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168169924009633","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Agricultural drought is a complex natural hazard involving multiple variables and has garnered increasing attention for its severe threat to food security worldwide. In the context of climate change and the increased occurrence of drought events, it is crucial to monitor drought drivers and progression to plan the subsequent efforts in drought prevention, adaptation, and migration. However, previous studies on agricultural drought often focused on precipitation or evapotranspiration, overlooking other potential drivers related to crop drought stress. Additionally, macro-level analyses of drought-driving mechanisms struggle to reveal the underlying contexts of varying drought intensities. Northern Italy is one of the most important agricultural regions in Europe and is also a hotspot affected by extreme climate events in the world. In the summer of 2022, an extreme drought struck Europe once again, causing significant damage to the agricultural regions of Northern Italy. However, no studies to date have revealed the potential impacts and extent of extreme drought on this crucial agricultural area at a regional scale. Therefore, a comprehensive understanding of agricultural drought still requires further clarification and differentiated driver analysis. This study proposed a novel framework to comprehensively monitor agricultural drought with ensemble machine learning by constructing an integrated agriculture drought index (IADI) with remote sensing-related data including meteorology, soil, geomorphology, and vegetation conditions. Additionally, the Shapley Additive Explanation (SHAP) explainable model was applied to reveal the driving mechanism behind the drought event that occurred in northern Italy in the summer of 2022. Results indicated that the proposed explainable ensemble machine learning model with multi-source remote sensing products could effectively depict the evolution of agricultural drought with spatially continuous maps on an 8-day scales. The SHAP analysis demonstrated that the extreme and severe agricultural drought in the summer of 2022 was closely related to meteorological indicators especially precipitation and land surface temperature, which contributed 68.88% to the drought. Moreover, the new findings also highlighted that soil properties affected the agricultural drought with a contribution of 28.3%. Specifically, in the case of moderate and slight drought conditions, higher clay and soil organic carbon (SOC) content contribute to mitigating drought effects, while sandy and silty soils have the opposite effect, and the contributions from soil texture and SOC are more significant than precipitation and land surface temperature. The proposed research framework could effectively contribute to improving the methodology in agricultural drought research, potentially bringing more instructive insights for drought prevention and mitigation.
期刊介绍:
Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.