A hybrid spatiotemporal model combining graph attention network and gated recurrent unit for regional composite air pollution prediction and collaborative control
IF 10.5 1区 工程技术Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Li Wang , Baicheng Hu , Yuan Zhao , Kunlin Song , Jianmin Ma , Hong Gao , Tao Huang , Xiaoxuan Mao
{"title":"A hybrid spatiotemporal model combining graph attention network and gated recurrent unit for regional composite air pollution prediction and collaborative control","authors":"Li Wang , Baicheng Hu , Yuan Zhao , Kunlin Song , Jianmin Ma , Hong Gao , Tao Huang , Xiaoxuan Mao","doi":"10.1016/j.scs.2024.105925","DOIUrl":null,"url":null,"abstract":"<div><div>Machine learning (ML) models have been extensively applied in air quality prediction. However, many of these models often failed to unveil complex mechanisms and regional spatiotemporal variations of composite air pollution. This brings uncertainties in using ML models for effective composite air pollution control. The present study developed a novel hybrid spatiotemporal model framework combining Graph Attention Network (GAT) and Gated Recurrent Unit (GRU), namely the GAT-GRU model, to foresee composite air pollutions with a focus on PM<sub>2.5</sub> and O<sub>3</sub>. By extracting attention matrices for PM<sub>2.5<img></sub>O<sub>3</sub> composite pollution and applying the Louvain algorithm, the framework established effective community network divisions for coordinated control of PM<sub>2.5<img></sub>O<sub>3</sub> composite pollution. The framework was applied and tested in China's “2 + 26″ cities, a city cluster with most heavy PM<sub>2.5</sub> and O<sub>3</sub> pollution and precursor emission sources. The results demonstrate that the framework successfully captured spatiotemporal evolution of combined PM<sub>2.5</sub> and O<sub>3</sub> pollution. The attention matrix is autonomously generated during course of the model learning process with the aim to interpret the complex interactions among “2 + 26″ cities. The framework provides a new perspective for the interpretability of artificial intelligence models and offers a methodological support and scientific evidence for formulating regional pollution cooperative governance strategies.</div></div>","PeriodicalId":48659,"journal":{"name":"Sustainable Cities and Society","volume":"116 ","pages":"Article 105925"},"PeriodicalIF":10.5000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Cities and Society","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210670724007492","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning (ML) models have been extensively applied in air quality prediction. However, many of these models often failed to unveil complex mechanisms and regional spatiotemporal variations of composite air pollution. This brings uncertainties in using ML models for effective composite air pollution control. The present study developed a novel hybrid spatiotemporal model framework combining Graph Attention Network (GAT) and Gated Recurrent Unit (GRU), namely the GAT-GRU model, to foresee composite air pollutions with a focus on PM2.5 and O3. By extracting attention matrices for PM2.5O3 composite pollution and applying the Louvain algorithm, the framework established effective community network divisions for coordinated control of PM2.5O3 composite pollution. The framework was applied and tested in China's “2 + 26″ cities, a city cluster with most heavy PM2.5 and O3 pollution and precursor emission sources. The results demonstrate that the framework successfully captured spatiotemporal evolution of combined PM2.5 and O3 pollution. The attention matrix is autonomously generated during course of the model learning process with the aim to interpret the complex interactions among “2 + 26″ cities. The framework provides a new perspective for the interpretability of artificial intelligence models and offers a methodological support and scientific evidence for formulating regional pollution cooperative governance strategies.
期刊介绍:
Sustainable Cities and Society (SCS) is an international journal that focuses on fundamental and applied research to promote environmentally sustainable and socially resilient cities. The journal welcomes cross-cutting, multi-disciplinary research in various areas, including:
1. Smart cities and resilient environments;
2. Alternative/clean energy sources, energy distribution, distributed energy generation, and energy demand reduction/management;
3. Monitoring and improving air quality in built environment and cities (e.g., healthy built environment and air quality management);
4. Energy efficient, low/zero carbon, and green buildings/communities;
5. Climate change mitigation and adaptation in urban environments;
6. Green infrastructure and BMPs;
7. Environmental Footprint accounting and management;
8. Urban agriculture and forestry;
9. ICT, smart grid and intelligent infrastructure;
10. Urban design/planning, regulations, legislation, certification, economics, and policy;
11. Social aspects, impacts and resiliency of cities;
12. Behavior monitoring, analysis and change within urban communities;
13. Health monitoring and improvement;
14. Nexus issues related to sustainable cities and societies;
15. Smart city governance;
16. Decision Support Systems for trade-off and uncertainty analysis for improved management of cities and society;
17. Big data, machine learning, and artificial intelligence applications and case studies;
18. Critical infrastructure protection, including security, privacy, forensics, and reliability issues of cyber-physical systems.
19. Water footprint reduction and urban water distribution, harvesting, treatment, reuse and management;
20. Waste reduction and recycling;
21. Wastewater collection, treatment and recycling;
22. Smart, clean and healthy transportation systems and infrastructure;