Yafeng Chen , Xueyun Wen , Yan Lu , Zhihao Lan , Lei Fan , Harold S. Park , Zhongming Gu , Jie Zhu , Zhongqing Su
{"title":"Broadband large-scale acoustic topological waveguides","authors":"Yafeng Chen , Xueyun Wen , Yan Lu , Zhihao Lan , Lei Fan , Harold S. Park , Zhongming Gu , Jie Zhu , Zhongqing Su","doi":"10.1016/j.compstruct.2024.118669","DOIUrl":null,"url":null,"abstract":"<div><div>The acoustic topological waveguide (ATW) hosting topologically protected waveguide modes provides a unique opportunity for achieving large-scale sound transport with robustness. However, prevailing ATWs are typically designed by forward-designed sonic crystals (SCs) based on physical intuitions, unavoidably leading to restricted bandwidths. Here, using the inverse-designed SCs with maximized topological bandgaps, we construct broadband ATWs based on both the quantum spin Hall effect and the quantum valley Hall effect. Broadband large-scale transportation, spin-locked one-way transportation, and the squeezing effect of acoustic waves are demonstrated. This study ushers a new path for designing topological devices with broadband performance for large-scale acoustic wave transportation.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"352 ","pages":"Article 118669"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822324007979","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
The acoustic topological waveguide (ATW) hosting topologically protected waveguide modes provides a unique opportunity for achieving large-scale sound transport with robustness. However, prevailing ATWs are typically designed by forward-designed sonic crystals (SCs) based on physical intuitions, unavoidably leading to restricted bandwidths. Here, using the inverse-designed SCs with maximized topological bandgaps, we construct broadband ATWs based on both the quantum spin Hall effect and the quantum valley Hall effect. Broadband large-scale transportation, spin-locked one-way transportation, and the squeezing effect of acoustic waves are demonstrated. This study ushers a new path for designing topological devices with broadband performance for large-scale acoustic wave transportation.
期刊介绍:
The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials.
The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.