{"title":"Single track orbit determination analysis for low Earth orbit with approximated J2 dynamics","authors":"","doi":"10.1016/j.asr.2024.09.035","DOIUrl":null,"url":null,"abstract":"<div><div>In the domain of Space Situational Awareness (SSA), the challenges related to orbit determination and catalog correlation are notably pronounced, exacerbated by data scarcity. This study introduces an initial orbit determination methodology that relies on data obtained from a single surveillance radar, with the need for fast algorithms within an operational context serving as the main design driver. The result is a linearized least-squares fitting procedure incorporating an analytically formulated approximation of the dynamics under the <span><math><mrow><msub><mrow><mi>J</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> perturbation, valid for short-term propagation. This algorithm utilizes all available observables, including range-rate, distinguishing it from other similar methods. A significant contribution of this paper is the enhancement of estimation quality by incorporating information about the object’s predicted orbital plane into the methodology, a method denoted as OPOD. The proposed methods are evaluated through a series of simulations against a classical range and angles fitting method (GTDS) to examine the effects of track length and measurement density on the quality of full state estimation, including the impact of using arcs that are too short. The OPOD methodology shows promising results throughout a wide range of scenarios.</div></div>","PeriodicalId":50850,"journal":{"name":"Advances in Space Research","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Space Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0273117724009694","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In the domain of Space Situational Awareness (SSA), the challenges related to orbit determination and catalog correlation are notably pronounced, exacerbated by data scarcity. This study introduces an initial orbit determination methodology that relies on data obtained from a single surveillance radar, with the need for fast algorithms within an operational context serving as the main design driver. The result is a linearized least-squares fitting procedure incorporating an analytically formulated approximation of the dynamics under the perturbation, valid for short-term propagation. This algorithm utilizes all available observables, including range-rate, distinguishing it from other similar methods. A significant contribution of this paper is the enhancement of estimation quality by incorporating information about the object’s predicted orbital plane into the methodology, a method denoted as OPOD. The proposed methods are evaluated through a series of simulations against a classical range and angles fitting method (GTDS) to examine the effects of track length and measurement density on the quality of full state estimation, including the impact of using arcs that are too short. The OPOD methodology shows promising results throughout a wide range of scenarios.
期刊介绍:
The COSPAR publication Advances in Space Research (ASR) is an open journal covering all areas of space research including: space studies of the Earth''s surface, meteorology, climate, the Earth-Moon system, planets and small bodies of the solar system, upper atmospheres, ionospheres and magnetospheres of the Earth and planets including reference atmospheres, space plasmas in the solar system, astrophysics from space, materials sciences in space, fundamental physics in space, space debris, space weather, Earth observations of space phenomena, etc.
NB: Please note that manuscripts related to life sciences as related to space are no more accepted for submission to Advances in Space Research. Such manuscripts should now be submitted to the new COSPAR Journal Life Sciences in Space Research (LSSR).
All submissions are reviewed by two scientists in the field. COSPAR is an interdisciplinary scientific organization concerned with the progress of space research on an international scale. Operating under the rules of ICSU, COSPAR ignores political considerations and considers all questions solely from the scientific viewpoint.