{"title":"Relativistic beam loading, recoil-reduction, and residual-wake acceleration with a covariant retarded-potential integrator","authors":"Benjamin Folsom, Emanuele Laface","doi":"10.1016/j.nima.2024.169988","DOIUrl":null,"url":null,"abstract":"<div><div>An algorithm is demonstrated that performs first-principles tracking of relativistic charged-particles. A covariant approach is used which relies on retarded vector potentials for trajectory integration instead of performing electromagnetic field calculations. When accounting for retardation effects, the peak vector potential and corresponding Lorentz force in the direction of travel increase asymptotically for high-<span><math><mi>β</mi></math></span> particles. This produces a very strong field distribution at small angles from the particle’s direction of travel, which can result in considerable change in momentum when approaching a conducting or charged object. We study these dynamics using protons and electrons at relativistic energies passing through apertures in conducting surfaces, where substantial energy shifts are observed for particles passing within roughly <span><math><mrow><mn>10</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span> of the aperture boundary.</div><div>We also simulate breaking a test particle’s line of sight with a conductor or other charged body. After this instant, the test particle continues to accelerate due to residual fields, but no longer produces an opposing force on any charged or conducting object; thus any recoil on the enclosing structure is effectively reduced. In this test, a 1% energy gain is observed for an 85 MeV electron traversing its reflected wake after having conducting plate in its path screened by a dielectric object.</div><div>We then incorporate a micro-scale dielectric laser acceleration (DLA) device into our simulations. Compared with a 2 mm DLA on its own, we find a factor of two increase in energy gain when adding a series of conducting-surface choppers.</div></div>","PeriodicalId":19359,"journal":{"name":"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment","volume":"1069 ","pages":"Article 169988"},"PeriodicalIF":1.5000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168900224009148","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
An algorithm is demonstrated that performs first-principles tracking of relativistic charged-particles. A covariant approach is used which relies on retarded vector potentials for trajectory integration instead of performing electromagnetic field calculations. When accounting for retardation effects, the peak vector potential and corresponding Lorentz force in the direction of travel increase asymptotically for high- particles. This produces a very strong field distribution at small angles from the particle’s direction of travel, which can result in considerable change in momentum when approaching a conducting or charged object. We study these dynamics using protons and electrons at relativistic energies passing through apertures in conducting surfaces, where substantial energy shifts are observed for particles passing within roughly of the aperture boundary.
We also simulate breaking a test particle’s line of sight with a conductor or other charged body. After this instant, the test particle continues to accelerate due to residual fields, but no longer produces an opposing force on any charged or conducting object; thus any recoil on the enclosing structure is effectively reduced. In this test, a 1% energy gain is observed for an 85 MeV electron traversing its reflected wake after having conducting plate in its path screened by a dielectric object.
We then incorporate a micro-scale dielectric laser acceleration (DLA) device into our simulations. Compared with a 2 mm DLA on its own, we find a factor of two increase in energy gain when adding a series of conducting-surface choppers.
期刊介绍:
Section A of Nuclear Instruments and Methods in Physics Research publishes papers on design, manufacturing and performance of scientific instruments with an emphasis on large scale facilities. This includes the development of particle accelerators, ion sources, beam transport systems and target arrangements as well as the use of secondary phenomena such as synchrotron radiation and free electron lasers. It also includes all types of instrumentation for the detection and spectrometry of radiations from high energy processes and nuclear decays, as well as instrumentation for experiments at nuclear reactors. Specialized electronics for nuclear and other types of spectrometry as well as computerization of measurements and control systems in this area also find their place in the A section.
Theoretical as well as experimental papers are accepted.