Improving the accuracy of honey bee forage class mapping using ensemble learning and multi-source satellite data in Google Earth Engine

IF 2.7 Q2 MULTIDISCIPLINARY SCIENCES
Filagot Mengistu , Binyam Tesfaw Hailu , Temesgen Alemayehu Abera , Janne Heiskanen , Tadesse Terefe Zeleke , Tino Johansson , Petri Pellikka
{"title":"Improving the accuracy of honey bee forage class mapping using ensemble learning and multi-source satellite data in Google Earth Engine","authors":"Filagot Mengistu ,&nbsp;Binyam Tesfaw Hailu ,&nbsp;Temesgen Alemayehu Abera ,&nbsp;Janne Heiskanen ,&nbsp;Tadesse Terefe Zeleke ,&nbsp;Tino Johansson ,&nbsp;Petri Pellikka","doi":"10.1016/j.sciaf.2024.e02415","DOIUrl":null,"url":null,"abstract":"<div><div>In semi-arid agro-pastoral environments of Africa, beekeeping is widely recognized as an important activity to improve and diversify livelihoods. Although the scientific identification of suitable honey bees (<em>Apis mellifera ssps.</em>) forages may guide beekeepers to set up apiaries or to timely move honey bee colonies to exploit bee forage resources available in various landscapes, the characterization and mapping of bee forage classes is challenging. We evaluated how various data sources and classification algorithms in Google Earth Engine (GEE) affect the accuracy of honey bee forage class mapping in a semi-arid region of Ethiopia. Predictors derived from multi-source satellite data, such as high-resolution Planet imagery (P), Sentinel 1 RADAR (S1), Sentinel 2 multispectral (S2), and Shuttle Radar Topographic Mission (SRTM) Digital Elevation Model (DEM) were tested and best predictors were identified using Forward Feature Selection (FFS). Four machine learning algorithms (Gradient Tree Boost (GTB), Random Forest (RF), Classification and Regression Trees (CART), and Support Vector Machine (SVM)), all available in GEE, were compared and ensembled for honey bee forage class mapping. The results show that the highest accuracy is obtained by all four algorithms when combining P, S1, S2, and DEM compared to using predictors from a single data source or any other combinations. GTB had higher overall accuracy (90.9 %) than RF (88.2 %), CART (85.5 %), or SVM (79.9 %). Nonetheless, the highest overall accuracy (94.7 %) was obtained when integrating the four machine learning algorithms in an Ensemble Learning Approach (ELA). Applying ELA improved the classification accuracy by 3.8 %, 6.5 %, 9.2 %, and 14.8 % compared to single learner classification algorithms (i.e., GTB, RF, CART, and SVM, respectively). This study demonstrates an improved classification accuracy for honey bee forage class mapping in tropical rangeland by applying ELA, which can provide a better approach for monitoring and managing bee forage resources.</div></div>","PeriodicalId":21690,"journal":{"name":"Scientific African","volume":"26 ","pages":"Article e02415"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific African","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468227624003570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In semi-arid agro-pastoral environments of Africa, beekeeping is widely recognized as an important activity to improve and diversify livelihoods. Although the scientific identification of suitable honey bees (Apis mellifera ssps.) forages may guide beekeepers to set up apiaries or to timely move honey bee colonies to exploit bee forage resources available in various landscapes, the characterization and mapping of bee forage classes is challenging. We evaluated how various data sources and classification algorithms in Google Earth Engine (GEE) affect the accuracy of honey bee forage class mapping in a semi-arid region of Ethiopia. Predictors derived from multi-source satellite data, such as high-resolution Planet imagery (P), Sentinel 1 RADAR (S1), Sentinel 2 multispectral (S2), and Shuttle Radar Topographic Mission (SRTM) Digital Elevation Model (DEM) were tested and best predictors were identified using Forward Feature Selection (FFS). Four machine learning algorithms (Gradient Tree Boost (GTB), Random Forest (RF), Classification and Regression Trees (CART), and Support Vector Machine (SVM)), all available in GEE, were compared and ensembled for honey bee forage class mapping. The results show that the highest accuracy is obtained by all four algorithms when combining P, S1, S2, and DEM compared to using predictors from a single data source or any other combinations. GTB had higher overall accuracy (90.9 %) than RF (88.2 %), CART (85.5 %), or SVM (79.9 %). Nonetheless, the highest overall accuracy (94.7 %) was obtained when integrating the four machine learning algorithms in an Ensemble Learning Approach (ELA). Applying ELA improved the classification accuracy by 3.8 %, 6.5 %, 9.2 %, and 14.8 % compared to single learner classification algorithms (i.e., GTB, RF, CART, and SVM, respectively). This study demonstrates an improved classification accuracy for honey bee forage class mapping in tropical rangeland by applying ELA, which can provide a better approach for monitoring and managing bee forage resources.
利用谷歌地球引擎中的集合学习和多源卫星数据提高蜜蜂饲料等级绘图的准确性
在非洲半干旱农牧环境中,养蜂被广泛认为是改善生计和使生计多样化的一项重要活动。虽然科学鉴定合适的蜜蜂(Apis mellifera sps.)饲料可以指导养蜂人建立养蜂场或及时转移蜜蜂群落,以利用各种地貌中的蜜蜂饲料资源,但蜜蜂饲料类别的特征描述和绘图却具有挑战性。我们评估了谷歌地球引擎(GEE)中的各种数据源和分类算法如何影响埃塞俄比亚半干旱地区蜜蜂饲料类别绘图的准确性。我们测试了从高分辨率行星图像(P)、哨兵 1 号雷达(S1)、哨兵 2 号多光谱(S2)和航天飞机雷达地形任务(SRTM)数字高程模型(DEM)等多源卫星数据中提取的预测因子,并使用前向特征选择(FFS)确定了最佳预测因子。对 GEE 中的四种机器学习算法(梯度树提升算法 (GTB)、随机森林算法 (RF)、分类和回归树算法 (CART) 以及支持向量机算法 (SVM))进行了比较和组合,以绘制蜜蜂饲草类别图。结果表明,与使用来自单一数据源的预测因子或任何其他组合相比,当组合 P、S1、S2 和 DEM 时,所有四种算法都能获得最高的准确率。GTB 的总体准确率(90.9%)高于 RF(88.2%)、CART(85.5%)或 SVM(79.9%)。然而,将四种机器学习算法集成到一个集合学习方法(ELA)中时,获得了最高的总体准确率(94.7%)。与单一学习器分类算法(即 GTB、RF、CART 和 SVM)相比,采用 ELA 可将分类准确率分别提高 3.8%、6.5%、9.2% 和 14.8%。这项研究表明,应用 ELA 可以提高热带牧场蜜蜂饲草类别绘图的分类精度,从而为蜜蜂饲草资源的监测和管理提供更好的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific African
Scientific African Multidisciplinary-Multidisciplinary
CiteScore
5.60
自引率
3.40%
发文量
332
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信