Sn-doped Ruddlesden-Popper structured LNO oxide as an effective cathode for proton-conducting solid oxide fuel cells

IF 8.3 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Mingming Zhang, Xiangbo Deng, Min Fu, Zetian Tao
{"title":"Sn-doped Ruddlesden-Popper structured LNO oxide as an effective cathode for proton-conducting solid oxide fuel cells","authors":"Mingming Zhang,&nbsp;Xiangbo Deng,&nbsp;Min Fu,&nbsp;Zetian Tao","doi":"10.1016/j.ijhydene.2024.10.320","DOIUrl":null,"url":null,"abstract":"<div><div>Proton-conducting solid oxide fuel cells (H–SOFCs) are promising devices for efficient chemical-to-electrical energy conversion at low temperatures. Extensive research has focused on enhancing the catalytic activity of cathodes. In this study, we employ a Sn doping strategy to modify the Ruddlesden-Popper structured La<sub>2</sub>NiO<sub>4+δ</sub> (LNO) cathode. Experimental results demonstrate that Sn doping significantly improve the oxygen reduction reaction (ORR) activity and protonation capability of the cathode. First-principles calculations further reveal that the La<sub>2</sub>Ni<sub>1-x</sub>Sn<sub>x</sub>O<sub>4+δ</sub> (LNSOx) cathode exhibits a lower oxygen vacancy formation energy compared to bare LNO. The peak power density of H–SOFCs with Sn-doped LNO reaches 1563 mW cm<sup>−2</sup> at 700 °C, notably higher than previously reported LNO-based H–SOFCs. These findings confirm the potential of Sn-doped LNO as an effective cathode material for H–SOFCs.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"92 ","pages":"Pages 748-754"},"PeriodicalIF":8.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319924045269","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Proton-conducting solid oxide fuel cells (H–SOFCs) are promising devices for efficient chemical-to-electrical energy conversion at low temperatures. Extensive research has focused on enhancing the catalytic activity of cathodes. In this study, we employ a Sn doping strategy to modify the Ruddlesden-Popper structured La2NiO4+δ (LNO) cathode. Experimental results demonstrate that Sn doping significantly improve the oxygen reduction reaction (ORR) activity and protonation capability of the cathode. First-principles calculations further reveal that the La2Ni1-xSnxO4+δ (LNSOx) cathode exhibits a lower oxygen vacancy formation energy compared to bare LNO. The peak power density of H–SOFCs with Sn-doped LNO reaches 1563 mW cm−2 at 700 °C, notably higher than previously reported LNO-based H–SOFCs. These findings confirm the potential of Sn-doped LNO as an effective cathode material for H–SOFCs.
掺杂锡的 Ruddlesden-Popper 结构 LNO 氧化物作为质子传导型固体氧化物燃料电池的有效阴极
质子传导固体氧化物燃料电池(H-SOFCs)是在低温条件下实现高效化学能-电能转换的理想设备。大量研究集中于提高阴极的催化活性。在本研究中,我们采用了掺杂锡的策略来改进 Ruddlesden-Popper 结构的 La2NiO4+δ (LNO) 阴极。实验结果表明,锡掺杂能显著提高阴极的氧还原反应(ORR)活性和质子化能力。第一性原理计算进一步表明,与裸 LNO 相比,La2Ni1-xSnxO4+δ(LNSOx)阴极具有更低的氧空位形成能。使用掺锡 LNO 的 H-SOFC 在 700 °C 时的峰值功率密度达到 1563 mW cm-2,明显高于之前报道的基于 LNO 的 H-SOFC。这些发现证实了掺锡 LNO 作为 H-SOFCs 有效阴极材料的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信